Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE) TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day 21 and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.
To assess the influence of Atlantic tropical cyclones (TCs) on the eastern U.S. drought regime, the Variable Infiltration Capacity (VIC) land surface hydrologic model was run over the eastern United States forced by the North American Land Data Assimilation System phase 2 (NLDAS-2) analysis with and without TCrelated precipitation for the period 1980-2007. A drought was defined in terms of soil moisture as a prolonged period below a percentile threshold. Different duration droughts were analyzed-short term (longer than 30 days) and long term (longer than 90 days)-as well as different drought severities corresponding to the 10th, 15th, and 20th percentiles of soil moisture depth. With TCs, droughts are shorter in duration and of a lesser spatial extent. Tropical cyclones variously impact soil moisture droughts via late drought initiation, weakened drought intensity, and early drought recovery. At regional scales, TCs decreased the average duration of moderately severe short-term and long-term droughts by less than 4 (10% of average drought duration per year) and more than 5 (15%) days yr 21 , respectively. Also, they removed at least two short-term and one longterm drought events over 50% of the study region. Despite the damage inflicted directly by TCs, they play a crucial role in the alleviation and removal of drought for some years and seasons, with important implications for water resources and agriculture.
As a natural phenomenon, drought can have devastating impacts on local populations through food insecurity and famine in the developing world, such as in Africa. In this study, the authors have established a seasonal hydrologic forecasting system for Africa. The system is based on the Climate Forecast System, version 2 (CFSv2), and the Variable Infiltration Capacity (VIC) land surface model. With a set of 26-yr (1982–2007) seasonal hydrologic hindcasts run at 0.25°, the probabilistic drought forecasts are validated using the 6-month Standard Precipitation Index (SPI6) and soil moisture percentile as indices. In terms of Brier skill score (BSS), the system is more skillful than climatology out to 3–5 months, except for the forecast of soil moisture drought over central Africa. The spatial distribution of BSS, which is similar to the pattern of persistency, shows more heterogeneity for soil moisture than the SPI6. Drought forecasts based on SPI6 are generally more skillful than for soil moisture, and their differences originate from the skill attribute of resolution rather than reliability. However, the soil moisture drought forecast can be more skillful than SPI6 at the beginning of the rainy season over western and southern Africa because of the strong annual cycle. Singular value decomposition (SVD) analysis of African precipitation and global SSTs indicates that CFSv2 reproduces the ENSO dominance on rainy season drought forecasts quite well, but the corresponding SVD mode from observations and CFSv2 only account for less than 24% and 31% of the covariance, respectively, suggesting that further understanding of drought drivers, including regional atmospheric dynamics and land–atmosphere coupling, is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.