This work documents the first version of the U.S. Department of Energy (DOE) new EnergyExascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission-relevant water cycle questions. Its components include atmosphere and land (110-km grid spacing), ocean and sea ice (60 km in the midlatitudes and 30 km at the equator and poles), and river transport (55 km) models. This base configuration will also serve as a foundation for additional configurations exploring higher horizontal resolution as well as augmented capabilities in the form of biogeochemistry and cryosphere configurations. The performance of E3SMv1 is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima simulations consisting of a long preindustrial control, historical simulations (ensembles of fully coupled and prescribed SSTs) as well as idealized CO 2 forcing simulations. The model performs well overall with biases typical of other CMIP-class models, although the simulated Atlantic Meridional Overturning Circulation is weaker than many CMIP-class models. While the E3SMv1 historical ensemble captures the bulk of the observed warming between preindustrial (1850) and present day, the trajectory of the warming diverges from observations in the Key Points: • This work documents E3SMv1, the first version of the U.S. DOE Energy Exascale Earth System Model • The performance of E3SMv1 is documented with a set of standard CMIP6 DECK and historical simulations comprising nearly 3,000 years • E3SMv1 has a high equilibrium climate sensitivity (5.3 K) and strong aerosol-related effective radiative forcing (-1.65 W/m 2 ) Correspondence to: Chris Golaz, golaz1@llnl.gov Citation: Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., et al. (2019). The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. second half of the twentieth century with a period of delayed warming followed by an excessive warming trend. Using a two-layer energy balance model, we attribute this divergence to the model's strong aerosol-related effective radiative forcing (ERF ari+aci = −1.65 W/m 2 ) and high equilibrium climate sensitivity (ECS = 5.3 K). Plain Language Summary The U.S. Department of Energy funded the development of a new state-of-the-art Earth system model for research and applications relevant to its mission. The Energy Exascale Earth System Model version 1 (E3SMv1) consists of five interacting components for the global atmosphere, land surface, ocean, sea ice, and rivers. Three of these components (ocean, sea ice, and river) are new and have not been coupled into an Earth system model previously. The atmosphere and land surface components were created by extending existing components part of the Community Earth System Model, Version 1. E3SMv1's capabilities are demonstrated by performing a set of standardized simulation experiments described by...
[1] Solar geoengineering-deliberate reduction in the amount of solar radiation retained by the Earth-has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO 2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO 2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO 2 levels but, compared to the preindustrial climate, leaves the tropics cooler (À0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2 mm day À1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO 2 fertilization, but also in part due to reduced plant heat stress compared to a high CO 2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.
Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.
A simple method was developed to forecast 3-and 6-month standardized precipitation indices (SPIs) for the prediction of meteorological drought over the contiguous United States based on precipitation seasonal forecasts from the NCEP Climate Forecast System (CFS). Before predicting SPI, the precipitation (P) forecasts from the coarse-resolution CFS global model were bias corrected and downscaled to a regional grid of 50 km. The downscaled CFS P forecasts, out to 9 months, were appended to the P analyses to form an extended P dataset. The SPIs were calculated from this new time series. Five downscaling methods were tested: 1) bilinear interpolation; 2) a bias correction and spatial downscaling (BCSD) method based on the probability distribution functions; 3) a conditional probability estimation approach using the mean P ensemble forecasts developed by J. Schaake, 4) a Bayesian approach that bias corrects and downscales P using all ensemble forecast members, as developed by the Princeton University group; and 5) multimethod ensemble as the equally weighted mean of the BCSD, Schaake, and Bayesian forecasts. For initial conditions from April to May, statistical downscaling methods were compared with dynamic downscaling based on the NCEP regional spectral model and forecasts from a high-resolution CFS T382 model. The skill is regionally and seasonally dependent. Overall, the 6-month SPI is skillful out to 3-4 months. For the first 3-month lead times, forecast skill comes from the P analyses prior to the forecast time. After 3 months, the multimethod ensemble has small advantages, but forecast skill may be too low to be useful in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.