Heating, ventilation, and air-conditioning (HVAC) systems usually have a set-point temperature control feature that uses the indoor dry-bulb temperature to control the indoor environment. However, an incorrect set-point temperature can reduce thermal comfort and result in unnecessary energy consumption. This study focuses on a derivation method for the optimal cooling set-point temperature of an HVAC system used in office buildings, considering the thermal characteristics and daily changes in the weather conditions, to establish a comfortable indoor environment and minimize unnecessary energy consumption. The operative temperature is used in the HVAC system control, and the mean radiant temperature is predicted with 94% accuracy through a multiple regression analysis by applying the indoor thermal environment data and weather information. The regression equation was utilized to create an additional equation to calculate the optimal set-point temperature. The simulation results indicate that the HVAC system control with the new set-point temperatures calculated from the derived equation improves thermal comfort by 38.5% (26%p). This study confirmed that a cooling set-point temperature that considers both the thermal characteristics of a building and weather conditions is effective in enhancing the indoor thermal comfort during summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.