Workers at construction sites are prone to fall-from-height (FFH) accidents. The severity of injury can be represented by the acceleration peak value. In the study, a risk prediction against FFH was made using IMU sensor data for accident prevention at construction sites. Fifteen general working movements (NF: non-fall), five low-hazard-fall movements, (LF), and five high-hazard-FFH movements (HF) were performed by twenty male subjects and a dummy. An IMU sensor was attached to the T7 position of the subject to measure the three-axis acceleration and angular velocity. The peak acceleration value, calculated from the IMU data, was 4 g or less in general work movements and 9 g or more in FFHs. Regression analysis was performed by applying various deep learning models, including 1D-CNN, 2D-CNN, LSTM, and Conv-LSTM, to the risk prediction, and then comparing them in terms of their mean absolute error (MAE) and mean squared error (MSE). The FFH risk level was estimated based on the predicted peak acceleration. The Conv-LSTM model trained by MAE showed the smallest error (MAE: 1.36 g), and the classification with the predicted peak acceleration showed the best accuracy (97.6%). This study successfully predicted the FFH risk levels and could be helpful to reduce fatal injuries at construction sites.
sEMG-based gesture recognition is useful for human–computer interactions, especially for technology supporting rehabilitation training and the control of electric prostheses. However, high variability in the sEMG signals of untrained users degrades the performance of gesture recognition algorithms. In this study, the hand posture recognition algorithm and radar plot-based visual feedback training were developed using multichannel sEMG sensors. Ten healthy adults and one bilateral forearm amputee participated by repeating twelve hand postures ten times. The visual feedback training was performed for two days and five days in healthy adults and a forearm amputee, respectively. Artificial neural network classifiers were trained with two types of feature vectors: a single feature vector and a combination of feature vectors. The classification accuracy of the forearm amputee increased significantly after three days of hand posture training. These results indicate that the visual feedback training efficiently improved the performance of sEMG-based hand posture recognition by reducing variability in the sEMG signal. Furthermore, a bilateral forearm amputee was able to participate in the rehabilitation training by using a radar plot, and the radar plot-based visual feedback training would help the amputees to control various electric prostheses.
Human-machine interfaces (HMI) refer to the physical interaction between a user and rehabilitation robots. A persisting excessive load leads to soft tissue damage, such as pressure ulcers. Therefore, it is necessary to define a comfortable binding part for a rehabilitation robot with the subject in a standing posture. The purpose of this study was to quantify the comfort at the binding parts of the standing rehabilitation robot. In Experiment 1, cuff pressures of 10–40 kPa were applied to the thigh, shank, and knee of standing subjects, and the interface pressure and pain scale were obtained. In Experiment 2, cuff pressures of 10–20 kPa were applied to the thigh, and the tissue oxygen saturation and the skin temperature were measured. Questionnaire responses regarding comfort during compression were obtained from the subjects using the visual analog scale and the Likert scale. The greatest pain was perceived in the thigh. The musculoskeletal configuration affected the pressure distribution. The interface pressure distribution by the binding part showed higher pressure at the intermuscular septum. Tissue oxygen saturation (StO2) increased to 111.9 ± 6.7% when a cuff pressure of 10 kPa was applied and decreased to 92.2 ± 16.9% for a cuff pressure of 20 kPa. A skin temperature variation greater than 0.2 °C occurred in the compressed leg. These findings would help evaluate and improve the comfort of rehabilitation robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.