Unregulated utilization of renewable generation including residential photovoltaic (PV) systems can have a significant impact on load characteristics in distribution networks. For improving PV generation capabilities, power quality aspects have to be coordinated with present load characteristics. This paper discusses the harmonic content of PV generation and the influence to power quality indicators in residential distribution networks. PV generation measurement results including current harmonic amplitude and phase angle values are presented. Results of different modelling scenarios are analysed and a simplified model of harmonics in PVs is offered. The results of the study showed a moderate additional harmonic distortion in residential load current and voltage distortion at the substation's busbar when PVs were added. Novelty of the paper is that harmonic current values at higher orders are presented and analysed. The results pointed out in this paper could be further used for modelling the actual harmonic loads of the PVs in distribution networks.
High-current impulse experiments were performed on volcanic ash samples to determine the magnetic effects that may result from the occurrence of volcanic lightning during explosive eruptions. Pseudo-ash was manufactured through milling and sieving of eruptive deposits with different bulk compositions and mineral contents. By comparing pre- and post-experimental samples, it was found that the saturation (i.e., maximum possible) magnetization increased, and coercivity (i.e., ability to withstand demagnetization) decreased. The increase in saturation magnetization was greater for compositionally evolved samples compared to more primitive samples subjected to equivalent currents. Changes in remanent (i.e., residual) magnetization do not correlate with composition, and show wide variability. Variations in magnetic properties were generally more significant when samples were subjected to higher peak currents as higher currents affect a greater proportion of the subjected sample. The electrons introduced by the current impulse cause reduction and devolatilization of the ash grains, changing their structural, mineralogical, and magnetic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.