Background: Melanocytes are not simply pigment-producing cells, but produce substances with a range of biological functions including antimicrobial defense. Recent studies suggest that Tolllike receptors (TLRs) play an important role in the cellular response through the recognition of pathogens.
We have observed that lipopolysaccharide (LPS) induces pigmentation in melanocytes and in this study have examined whether these responses are mediated by the p38 mitogen-activated protein kinase (MAPK) signaling pathway. LPS appears to stimulate the pigmentation of melanocytes and cultured skin. LPS was found to induce the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase protein in cells. Stimulation of melanocytes with LPS led to time dependent phosphorylation of p38 MAPK. Furthermore, p38 MAPK functionally regulated the LPS-induced melanin formation in melanocytes; a p38 MAPK inhibitor, SB203580, almost completely attenuated the LPS-mediated up-regulation of melanin synthesis and induction of MITF and tyrosinase expression. These findings indicate that activation of p38 MAPK plays an important role in LPS-induced melanogenesis by up-regulating MITF and tyrosinase expression.
Development of vitiligo-like hypopigmentary lesions associated with topical imiquimod has been reported. We hypothesized that mode of action of imiquimod in melanocytes may include triggering of apoptosis resulted in loss of cells, which may be a possible mechanism of imiquimod-induced hypopigmentary lesions. Therefore, we investigated whether imiquimod induces apoptosis of human melanocytes and also whether it modulates expression of apoptosis-related molecules in human melanocytes. Imiquimod treatment induced apoptosis of melanocytes, which was observed by TUNEL assay and Hoechst 33258 staining. Imiquimod-induced apoptosis was further shown by measuring mitochondrial membrane potential in melanocytes. The apoptotic activity of imiquimod was associated with caspase-3, Bcl-2 and mitogenactivated protein kinase expression in melanocytes. These results indicated that imiquimod induces apoptosis of melanocytes. These Wndings may provide a clue to understand pathogenesis of imiquimod-induced vitiligo-like hypopigmentary lesions.
BackgroundMicroneedles provide a minimally invasive means to transport molecules into the skin. A number of specific strategies have been employed to use microneedles for transdermal delivery.ObjectiveThe purpose of this study was to investigate the safety of two new digital microneedle devices (Digital Hand® and Digital Pro®; Bomtech Electronics Co., Ltd., Seoul, Korea) for the perforation of skin in skin-hairless-1 mice. This device replaces conventional needles and is designed specifically for intradermal delivery.MethodsWe used two newly developed digital microneedle devices to perforate the skin of skin-hairless-1 mice. We conducted a comparative study of the two digital microneedle devices and DTS® (Disk type-microneedle Therapy System; DTS lab., Seoul, Korea). To evaluate skin stability, we performed visual and dermatoscopic inspections, measurements of transepidermal water loss, and biopsies.ResultsThe two novel digital microneedle devices did not induce significant abnormalities of the skin on visual or dermatoscopic inspection, regardless of needle size (0.25~2.0 mm). No significant histopathological changes, such as inflammatory cell infiltration, desquamation of the stratum corneum, or disruption of the basal layer, were observed. The digital microneedle devices and microneedle therapy system produced similar results on measures of skin stability.ConclusionThese two novel digital microneedle devices are safe transdermal drug delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.