Cold sintering is an unusually low-temperature process that uses a transient transport phase, which is most often liquid, and an applied uniaxial force to assist in densification of a powder compact. By using this approach, many ceramic powders can be transformed to high-density monoliths at temperatures far below the melting point. In this article, we present a summary of cold sintering accomplishments and the current working models that describe the operative mechanisms in the context of other strategies for low-temperature ceramic densification. Current observations in several systems suggest a multiple-stage densification process that bears similarity to models that describe liquid phase sintering. We find that grain growth trends are consistent with classical behavior, but with activation energy values that are lower than observed for thermally driven processes. Densification behavior in these low-temperature systems is rich, and there is much to be investigated regarding mass transport within and across the liquid-solid interfaces that populate these ceramics during densification. Irrespective of mechanisms, these low temperatures create a new opportunity spectrum to design grain boundaries and create new types of nanocomposites among material combinations that previously had incompatible processing windows. Future directions are discussed in terms of both the fundamental science and engineering of cold sintering.
Ceramic-polymer composites are of interest for designing enhanced and unique properties. However, the processing temperature windows of sintering ceramics are much higher than that of compaction, extrusion, or sintering of polymers, and thus traditionally there has been an inability to cosinter ceramic-polymer composites in a single step with high amounts of ceramics. The cold sintering process is a low-temperature sintering technology recently developed for ceramics and ceramic-based composites. A wide variety of ceramic materials have now been demonstrated to be densified under the cold sintering process and therefore can be all cosintered with polymers from room temperature to 300 °C. Here, the status, understanding, and application of cold cosintering, with different examples of ceramics and polymers, are discussed. One has to note that these types of cold sintering processes are yet new, and a full understanding will only emerge after more ceramic-polymer examples emerge and different research groups build upon these early observations. The general processing, property designs, and an outlook on cold sintering composites are outlined. Ultimately, the cold sintering process could open up a new multimaterial design space and impact the field of ceramic-polymer composites.
A Na-ion solid-state electrolyte, Na P As S , is developed with an exceptionally high conductivity of 1.46 mS cm at 25 °C and enhanced moisture stability. Dual effects of alloying element As (lattice expansion and a weaker AsS bond strength) are responsible for the superior conductivity. Improved moisture stability is regulated by shifting low-energy moisture reactions to high-energy ones due to As.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.