IntroductionVarious methods and devices have been described for cooling after cardiac arrest, but the ideal cooling method remains unclear. The aim of this study was to compare the neurological outcomes, efficacies and adverse events of surface and endovascular cooling techniques in cardiac arrest patients.MethodsWe performed a multicenter, retrospective, registry-based study of adult cardiac arrest patients treated with therapeutic hypothermia presenting to 24 hospitals across South Korea from 2007 to 2012. We included patients who received therapeutic hypothermia using overall surface or endovascular cooling devices and compared the neurological outcomes, efficacies and adverse events of both cooling techniques. To adjust for differences in the baseline characteristics of each cooling method, we performed one-to-one matching by the propensity score.ResultsIn total, 803 patients were included in the analysis. Of these patients, 559 underwent surface cooling, and the remaining 244 patients underwent endovascular cooling. In the unmatched cohort, a greater number of adverse events occurred in the surface cooling group. Surface cooling was significantly associated with a poor neurological outcome (cerebral performance category 3–5) at hospital discharge (p = 0.01). After propensity score matching, surface cooling was not associated with poor neurological outcome and hospital mortality [odds ratio (OR): 1.26, 95% confidence interval (CI): 0.81-1.96, p = 0.31 and OR: 0.85, 95% CI: 0.55-1.30, p = 0.44, respectively]. Although surface cooling was associated with an increased incidence of adverse events (such as overcooling, rebound hyperthermia, rewarming related hypoglycemia and hypotension) compared with endovascular cooling, these complications were not associated with surface cooling using hydrogel pads.ConclusionsIn the overall matched cohort, no significant difference in neurological outcomes and hospital morality was observed between the surface and endovascular cooling methods.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-015-0819-7) contains supplementary material, which is available to authorized users.
Background We hypothesized that the absence of P25 and the N20–P25 amplitude in somatosensory evoked potentials (SSEPs) have higher sensitivity than the absence of N20 for poor neurological outcomes, and we evaluated the ability of SSEPs to predict long-term outcomes using pattern and amplitude analyses. Methods Using prospectively collected therapeutic hypothermia registry data, we evaluated whether cortical SSEPs contained a negative or positive short-latency wave (N20 or P25). The N20–P25 amplitude was defined as the largest difference in amplitude between the N20 and P25 peaks. A good or poor outcome was defined as a Glasgow-Pittsburgh Cerebral Performance Category (CPC) score of 1–2 or 3–5, respectively, 6 months after cardiac arrest. Results A total of 192 SSEP recordings were included. In all patients with a good outcome ( n = 51), both N20 and P25 were present. Compared to the absence of N20, the absence of N20–P25 component improved the sensitivity for predicting a poor outcome from 30.5% (95% confidence interval [CI], 23.0–38.8%) to 71.6% (95% CI, 63.4–78.9%), while maintaining a specificity of 100% (93.0–100.0%). Using an amplitude < 0.64 μV, i.e., the lowest N20–P25 amplitude in the good outcome group, as the threshold, the sensitivity for predicting a poor neurological outcome was 74.5% (95% CI, 66.5–81.4%). Using the highest N20–P25 amplitude in the CPC 4 group (2.31 μV) as the threshold for predicting a good outcome, the sensitivity and specificity were 52.9% (95% CI, 38.5–67.1%) and 96.5% (95% CI, 91.9–98.8%), respectively. The predictive performance of the N20–P25 amplitude was good, with an area under the receiver operating characteristic curve (AUC) of 0.94 (95% CI, 0.90–0.97). The absence of N20 was statistically inferior regarding outcome prediction ( p < 0.05), and amplitude analysis yielded significantly higher AUC values than did the pattern analysis ( p < 0.05). Conclusions The simple pattern analysis of whether the N20–P25 component was present had a sensitivity comparable to that of the N20–P25 amplitude for predicting a poor outcome. Amplitude analysis was also capable of predicting a good outcome. Electronic supplementary material The online version of this article (10.1186/s13054-019-2510-x) contains supplementary material, which is available to authorized users.
Situs inversus totalis is a rare inherent disease in which the thoracic and abdominal organs are transposed. Symptoms of appendicitis in situs inversus (SI) may appear in the left lower quadrant, and the diagnosis of appendicitis is very difficult. We report a case of left-sided appendicitis diagnosed preoperatively after dextrocardia that was detected by chest X-ray, although the chief complaint of the patient was left lower-quadrant pain. The patient underwent an emergent laparoscopic appendectomy under the diagnosis of appendicitis after abdominal computed tomography (CT). In patients with left lower quadrant pain, if the chest X-ray shows dextrocardia, one should suspect left-sided appendicitis. A strong suspicion of appendicitis and an emergency laparoscopic operation after confirmation of the diagnosis by imaging modalities including abdominal CT or sonography can reduce the likelihood of misdiagnosis and complications including perforation and abscess. Laparoscopic appendectomy in SI was technically more challenging because of the mirror nature of the anatomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.