The control architecture underlying human reaching has been established, at least in broad outline. However, despite extensive research, the control architecture underlying human locomotion remains unclear. Some studies show evidence of high-level control focused on lower-limb trajectories; others suggest that nonlinear oscillators such as lower-level rhythmic central pattern generators (CPGs) play a significant role. To resolve this ambiguity, we reasoned that if a nonlinear oscillator contributes to locomotor control, human walking should exhibit dynamic entrainment to periodic mechanical perturbation; entrainment is a distinctive behavior of nonlinear oscillators. Here we present the first behavioral evidence that nonlinear neuro-mechanical oscillators contribute to the production of human walking, albeit weakly. As unimpaired human subjects walked at constant speed, we applied periodic torque pulses to the ankle at periods different from their preferred cadence. The gait period of 18 out of 19 subjects entrained to this mechanical perturbation, converging to match that of the perturbation. Significantly, entrainment occurred only if the perturbation period was close to subjects' preferred walking cadence: it exhibited a narrow basin of entrainment. Further, regardless of the phase within the walking cycle at which perturbation was initiated, subjects' gait synchronized or phase-locked with the mechanical perturbation at a phase of gait where it assisted propulsion. These results were affected neither by auditory feedback nor by a distractor task. However, the convergence to phase-locking was slow. These characteristics indicate that nonlinear neuro-mechanical oscillators make at most a modest contribution to human walking. Our results suggest that human locomotor control is not organized as in reaching to meet a predominantly kinematic specification, but is hierarchically organized with a semi-autonomous peripheral oscillator operating under episodic supervisory control.
Theoretical studies and robotic experiments have shown that asymptotically stable periodic walking may emerge from nonlinear limit-cycle oscillators in the neuro-mechanical periphery. We recently reported entrainment of human gait to periodic mechanical perturbations with two essential features: 1) entrainment occurred only when the perturbation period was close to the original (preferred) walking period, and 2) entrainment was always accompanied by phase locking so that the perturbation occurred at the end of the double-stance phase. In this study, we show that a highly-simplified state-determined walking model can reproduce several salient nonlinear limit-cycle behaviors of human walking: 1) periodic gait that is 2) asymptotically stable; 3) entrainment to periodic mechanical perturbations only when the perturbation period is close to the model's unperturbed period; and 4) phase-locking to locate the perturbation at the end of double stance. Importantly, this model requires neither supra-spinal control nor an intrinsic self-sustaining neural oscillator such as a rhythmic central pattern generator. Our results suggest that several prominent limit-cycle features of human walking may stem from simple afferent feedback processes without significant involvement of supra-spinal control or a self-sustaining oscillatory neural network.
Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements.
The detection of an error in the motor output and the correction in the next movement are critical components of any form of motor learning. Accordingly, a variety of iterative learning models have assumed that a fraction of the error is adjusted in the next trial. This critical fraction, the correction gain, learning rate, or feedback gain, has been frequently estimated via least-square regression of the obtained data set. Such data contain not only the inevitable noise from motor execution, but also noise from measurement. It is generally assumed that this noise averages out with large data sets and does not affect the parameter estimation. This study demonstrates that this is not the case and that in the presence of noise the conventional estimate of the correction gain has a significant bias, even with the simplest model. Furthermore, this bias does not decrease with increasing length of the data set. This study reveals this limitation of current system identification methods and proposes a new method that overcomes this limitation. We derive an analytical form of the bias from a simple regression method (Yule-Walker) and develop an improved identification method. This bias is discussed as one of other examples for how the dynamics of noise can introduce significant distortions in data analysis.
Mathematical techniques have provided tools to quantify the stability of rhythmic movements of humans and machines as well as mathematical models. One archetypal example is the use of Floquet multipliers: assuming periodic motion to be a limit-cycle of a nonlinear oscillator, local stability has been assessed by evaluating the rate of convergence to the limit-cycle. However, the accuracy of the assessment in experiments is questionable: Floquet multipliers provide a measure of orbital stability for deterministic systems, but various components of biological systems and machines involve inevitable noise. In this study, we show that the conventional estimate of orbital stability, which depends on regression, has bias in the presence of noise. We quantify the bias, and devise a new method to estimate orbital stability more accurately. Compared with previous methods, our method substantially reduces the bias, providing acceptable estimates of orbital stability with an order-of-magnitude fewer cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.