Yttria-stabilized zirconia (YSZ) films were synthesized by atomic layer deposition (ALD). Tetrakis(dimethylamido)zirconium and tris(methylcyclopentadienyl)yttrium were used as ALD precursors with distilled water as oxidant. From X-ray photoelectron spectroscopy (XPS) compositional analysis, the yttria content was identified to increase proportionally to the pulse ratio of Y/Zr. Accordingly, the target stoichiometry ZrO2/Y2O3 = 0.92:0.08 was achieved. Crystal and grain structures of ALD YSZ films grown on amorphous Si3N4 were analyzed by X-ray diffraction (XRD) and atomic force microscopy (AFM). The microstructure of the polycrystalline films consisted of grains of tens of nanometers in diameter. To evaluate ALD YSZ films as oxide ion conductor, freestanding 60 nm films were prepared with porous platinum electrodes on both sides of the electrolyte. This structure served as a solid oxide fuel cell designed to operate at low temperatures. Maximum power densities of 28 mW/cm2, 66 mW/cm2, and 270 mW/cm2 were observed at 265 °C, 300 °C, and 350 °C, respectively. The high performance of thin film ALD electrolyte fuel cells is related to low electrolyte resistance and fast electrode kinetics. The exchange current density at the electrode−electrolyte interface was approximately 4 orders of magnitude higher compared to reference Pt-YSZ values.
A low temperature micro solid oxide fuel cell with corrugated electrolyte membrane was developed and tested. To increase the electrochemically active surface area, yttria-stabilized zirconia membranes with thickness of 70 nm were deposited onto prepatterned silicon substrates. Fuel cell performance of the corrugated electrolyte membranes released from silicon substrate showed an increase of power density relative to membranes with planar electrolytes. Maximum power densities of the corrugated fuel cells of 677 mW/cm2 and 861 mW/cm2 were obtained at 400 and 450 degrees C, respectively.
Diagnosing of the interface quality and the interactions between insulators and semiconductors is significant to achieve the high performance of nanodevices. Herein, low-frequency noise (LFN) in mechanically exfoliated multilayer molybdenum disulfide (MoS2) (~11.3 nm-thick) field-effect transistors with back-gate control was characterized with and without an Al2O3 high-k passivation layer. The carrier number fluctuation (CNF) model associated with trapping/detrapping the charge carriers at the interface nicely described the noise behavior in the strong accumulation regime both with and without the Al2O3 passivation layer. The interface trap density at the MoS2-SiO2 interface was extracted from the LFN analysis, and estimated to be Nit ~ 10(10) eV(-1) cm(-2) without and with the passivation layer. This suggested that the accumulation channel induced by the back-gate was not significantly influenced by the passivation layer. The Hooge mobility fluctuation (HMF) model implying the bulk conduction was found to describe the drain current fluctuations in the subthreshold regime, which is rarely observed in other nanodevices, attributed to those extremely thin channel sizes. In the case of the thick-MoS2 (~40 nm-thick) without the passivation, the HMF model was clearly observed all over the operation regime, ensuring the existence of the bulk conduction in multilayer MoS2. With the Al2O3 passivation layer, the change in the noise behavior was explained from the point of formation of the additional top channel in the MoS2 because of the fixed charges in the Al2O3. The interface trap density from the additional CNF model was Nit = 1.8 × 10(12) eV(-1) cm(-2) at the MoS2-Al2O3 interface.
Structural and microstructural properties as well as the fuel cell performance of anhydrous proton conducting yttria-doped barium zirconate (BYZ) membranes were investigated. The membranes were nominally about 100 nm thick and were fabricated by both atomic layer deposition (ALD) and pulsed laser deposition (PLD) techniques on micromachined Si substrates. Electrochemical cells (H 2 , Pt/BYZ/Pt, air) were fabricated using porous platinum electrodes deposited by sputtering. The cells were tested in the temperature regime 200-450 °C. Power densities of 136 mW/cm 2 at 400 °C employing a BYZ membrane fabricated by ALD and 120 mW/cm 2 at 450 °C employing a BYZ fabricated by PLD clearly represent the highest reported values in the literature at these temperatures. The difference in the cell performances for the ALD BYZ versus PLD BYZ membranes is attributed to differences in their surface morphology and interfacial microstructure.
In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.