A low temperature micro solid oxide fuel cell with corrugated electrolyte membrane was developed and tested. To increase the electrochemically active surface area, yttria-stabilized zirconia membranes with thickness of 70 nm were deposited onto prepatterned silicon substrates. Fuel cell performance of the corrugated electrolyte membranes released from silicon substrate showed an increase of power density relative to membranes with planar electrolytes. Maximum power densities of the corrugated fuel cells of 677 mW/cm2 and 861 mW/cm2 were obtained at 400 and 450 degrees C, respectively.
IntroductionThe interaction between the immune and skeletal systems is evidenced by the bone loss observed in autoimmune diseases such as rheumatoid arthritis. In this paper we describe a new mechanism by which the immune cytokine IL-17A directly affects osteoclastogenesis.MethodsHuman CD14+ cells were isolated from healthy donors, cultured on dentine slices and coverslips and stimulated with IL-17A and/or receptor activator of NF-κB ligand (RANKL). Osteoclast differentiation was evaluated by gene expression, flow cytometry, tartrate-resistant acid phosphatase staining, fluorescence and electron microscopy. Physiologic bone remodelling was studied in wild-type (Wt) and IL-17A-/- mice using micro-computer tomography and serum RANKL/osteoprotegerin concentration. Functional osteoclastogenesis assays were performed using bone marrow macrophages isolated from IL-17A-/- and Wt mice.ResultsIL-17A upregulates the receptor activator for NF-κB receptor on human osteoclast precursors in vitro, leading to increased sensitivity to RANKL signalling, osteoclast differentiation and bone loss. IL-17A-/- mice have physiological bone homeostasis indistinguishable from Wt mice, and bone marrow macrophages isolated from these mice develop fully functional normal osteoclasts.ConclusionsCollectively our data demonstrate anti-IL-17A treatment as a selective therapeutic target for bone loss associated with autoimmune diseases.
Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated transgenic mice on the NOD background expressing a T cell receptor (TCR)-specific for peptide epitope 286–300 (p286) of GAD65. These mice have GAD65-specific CD4+ T cells, as shown by staining with an I-Ag7(p286) tetramer reagent. Lymphocytes from these TCR transgenic mice proliferate and make interferon γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α, and IL-10 when stimulated in vitro with GAD65 peptide 286–300, yet these TCR transgenic animals do not spontaneously develop diabetes, and insulitis is virtually undetectable. Furthermore, in vitro activated CD4 T cells from GAD 286 TCR transgenic mice express higher levels of CTL-associated antigen (CTLA)-4 than nontransgenic littermates. CD4+ T cells, or p286-tetramer+CD4+ Tcells, from GAD65 286–300-specific TCR transgenic mice delay diabetes induced in NOD.scid mice by diabetic NOD spleen cells. This data suggests that GAD65 peptide 286–300-specific T cells have disease protective capacity and are not pathogenic.
Background
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by
clinical features that include bone loss and epidermal hyperplasia. Aberrant cytokine
expression has been linked to joint and skin pathology; however, it is unclear which
cytokines are critical for disease initiation. IL-17A participates in many pathologic
immune responses; however, its role in PsA has not been fully elucidated.
Objective
To determine the role of IL-17A in epidermal hyperplasia and bone destruction
associated with psoriatic arthritis.
Design
An in vivo gene transfer approach was used to investigate the
role of IL-17A in animal models of inflammatory (Collagen-induced arthritis) and
non-inflammatory (RANKL-gene transfer) bone loss.
Results
IL-17A gene transfer induced the expansion of
IL-17RA+CD11b+Gr1low osteoclast
precursors and a concomitant elevation of biomarkers indicative of bone resorption. This
occurred at a time preceding noticeable joint inflammation suggesting that IL-17A is
critical for the induction of pathological bone resorption through direct activation of
osteoclast precursors. Moreover, IL-17A induced a second myeloid population
CD11b+Gr1high neutrophil-like cells which was associated
with cutaneous pathology including epidermal hyperplasia, parakeratosis, and
Munro’s microabscesses formation.
Conclusion
Collectively, these data support that IL-17A can play a key role in the
pathogenesis of inflammation-associated arthritis and/or skin disease, as observed in
PsA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.