Aberrant cytokine expression has been proposed as an underlying cause of psoriasis, although it is unclear which cytokines play critical roles. Interleukin (IL)-23 is expressed in human psoriasis and may be a master regulator cytokine. Direct intradermal administration of IL-23 in mouse skin, but not IL-12, initiates a tumor necrosis factor–dependent, but IL-17A–independent, cascade of events resulting in erythema, mixed dermal infiltrate, and epidermal hyperplasia associated with parakeratosis. IL-23 induced IL-19 and IL-24 expression in mouse skin, and both genes were also elevated in human psoriasis. IL-23–dependent epidermal hyperplasia was observed in IL-19−/− and IL-24−/− mice, but was inhibited in IL-20R2−/− mice. These data implicate IL-23 in the pathogenesis of psoriasis and support IL-20R2 as a novel therapeutic target.
Transplantation of oligodendrocyte precursor cells (OPCs) is a promising potential therapeutic strategy for diseases affecting myelin. However, the derivation of engraftable OPCs from human pluripotent stem cells has proven difficult and primary OPCs are not readily available. Here we report the generation of induced OPCs (iOPCs) by direct lineage conversion. Forced expression of the three transcription factors Sox10, Olig2 and Zfp536 was sufficient to reprogram mouse and rat fibroblasts into iOPCs with morphologies and gene expression signatures resembling primary OPCs. More importantly, iOPCs gave rise to mature oligodendrocytes that could ensheath multiple host axons when co-cultured with primary dorsal root ganglion cells and formed myelin after transplantion into shiverer mice. We propose direct lineage reprogramming as a viable alternative approach for the generation of OPCs for use in disease modeling and regenerative medicine.
IntroductionThe interaction between the immune and skeletal systems is evidenced by the bone loss observed in autoimmune diseases such as rheumatoid arthritis. In this paper we describe a new mechanism by which the immune cytokine IL-17A directly affects osteoclastogenesis.MethodsHuman CD14+ cells were isolated from healthy donors, cultured on dentine slices and coverslips and stimulated with IL-17A and/or receptor activator of NF-κB ligand (RANKL). Osteoclast differentiation was evaluated by gene expression, flow cytometry, tartrate-resistant acid phosphatase staining, fluorescence and electron microscopy. Physiologic bone remodelling was studied in wild-type (Wt) and IL-17A-/- mice using micro-computer tomography and serum RANKL/osteoprotegerin concentration. Functional osteoclastogenesis assays were performed using bone marrow macrophages isolated from IL-17A-/- and Wt mice.ResultsIL-17A upregulates the receptor activator for NF-κB receptor on human osteoclast precursors in vitro, leading to increased sensitivity to RANKL signalling, osteoclast differentiation and bone loss. IL-17A-/- mice have physiological bone homeostasis indistinguishable from Wt mice, and bone marrow macrophages isolated from these mice develop fully functional normal osteoclasts.ConclusionsCollectively our data demonstrate anti-IL-17A treatment as a selective therapeutic target for bone loss associated with autoimmune diseases.
Background Heart development is tightly regulated by signaling events acting upon a defined number of progenitor and differentiated cardiac cells. While loss-of-function of these signaling pathways leads to congenital malformation, the consequences of cardiac progenitor cell (CPC) or embryonic cardiomyocyte loss are less clear. In this study, we tested the hypothesis that embryonic mouse hearts exhibit a robust mechanism for regeneration following extensive cell loss. Methods and Results By combining a conditional cell ablation approach with a novel blastocyst complementation strategy, we generated murine embryos that exhibit a full spectrum of CPC or cardiomyocyte ablation. Remarkably, ablation of up to 60% of CPCs at embryonic day 7.5 was well-tolerated and permitted embryo survival. Ablation of embryonic cardiomyocytes to a similar degree (50-60%) at embryonic day 9.0 could be fully rescued by residual myocytes with no obvious adult cardiac functional deficit. In both ablation models, an increase in cardiomyocyte proliferation rate was detected and accounted for at least some of the rapid recovery of myocardial cellularity and heart size. Conclusions Our study defines the threshold for cell loss in the embryonic mammalian heart and reveals a robust cardiomyocyte compensatory response that sustains normal fetal development.
Background Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by clinical features that include bone loss and epidermal hyperplasia. Aberrant cytokine expression has been linked to joint and skin pathology; however, it is unclear which cytokines are critical for disease initiation. IL-17A participates in many pathologic immune responses; however, its role in PsA has not been fully elucidated. Objective To determine the role of IL-17A in epidermal hyperplasia and bone destruction associated with psoriatic arthritis. Design An in vivo gene transfer approach was used to investigate the role of IL-17A in animal models of inflammatory (Collagen-induced arthritis) and non-inflammatory (RANKL-gene transfer) bone loss. Results IL-17A gene transfer induced the expansion of IL-17RA+CD11b+Gr1low osteoclast precursors and a concomitant elevation of biomarkers indicative of bone resorption. This occurred at a time preceding noticeable joint inflammation suggesting that IL-17A is critical for the induction of pathological bone resorption through direct activation of osteoclast precursors. Moreover, IL-17A induced a second myeloid population CD11b+Gr1high neutrophil-like cells which was associated with cutaneous pathology including epidermal hyperplasia, parakeratosis, and Munro’s microabscesses formation. Conclusion Collectively, these data support that IL-17A can play a key role in the pathogenesis of inflammation-associated arthritis and/or skin disease, as observed in PsA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.