This study was conducted to determine effects of soil pH and form of nitrogen fertilizers on tomato growth and chemical properties of greenhouse soil using ferigation system. Tomato (Lycopersicon esculentum Mill. cv. Superdoterang) were grown for three months in 18 L pots filled with two soil (pH 6.8 and pH 8.7). 4 different nitrogen fertilizers (urea, ammonium nitrate, ammonium sulfate, and potassium nitrate) were fertigated with different concentrations of 0, 10, 50, and 100 mg N/L during tomato cultivation. Soil pH 8.7 decreased yield and chlorophyll fluorescence compared with soil pH 6.8. Yield at soil pH 8.7 increased by ammonium nitrate and ammonium sulfate fertigation. Soil pH 6.8 induced increment of yield by nitrogen concentration than form of nitrogen fertilizers. Soil pH after cultivation of tomato decreased by application of ammonium nitrate and ammonium sulfate. Soil EC by 100 mg N/L application of ammonium sulfate was twice as much as other fertilizers. Form of nitrogen fertilizer had less effect on concentration of soil NH 4 + -N and NO 3 --N in soil but the concentrations slightly reduced at pH 8.7. These results indicate that application of urea and ammonium nitrate for a nitrogen source of fertigation has little affects on soil chemical properties before and after tomato cultivation.
Various cultural practices have been promoted as management options for enhancing soil quality and health. The use of soil management methods can cause changes in fertility by affecting soil chemical properties. This study aimed to evaluate interactions between soil chemical properties and soil management methods in protected cultivation, and to classify soil management methods that similarly affect soil chemical properties. Water-logging and irrigation reduced soil pH and available P 2 O 5 content. Application of animal manures has a positive effect on levels of organic matter, Av.P 2 O 5 , K, Zn, and Cu. The electrical conductivites tened to be low in the application of organic amendments, including rice and wood residues. Deeper plowing caused a reduction in Ca content. Practicing soil nutrient-considering fertilization and fertigation did not exert an influence on nutrient element contents. In a cluster analysis of the soil management methods according to major nutrients, low similarities were found with deeper plowing and crop rotation with rice in comparison with other practices. In a cluster analysis by minor nutrient characteristics, crop rotation and application of animal manures and rice residues were linked at a high Ward's distance, while other practices were found to be relatively low distinct. Each soil management method has a similar or different effect on soil chemical properties. These results suggest the necessity of establishing limits and standards according to the effects of soil management methods on soil chemical properties for economic soil practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.