These results indicate that NOX1 and NOX4 may play an important role in reactive oxygen species production, contributing to the oxidative stress in allergic rhinitis and nasal polyp tissues.
With the growing interest and popularity of electric vehicles (EVs), the electrification of buses has been progressing recently. To achieve the seamless operation of electric buses (e-Buses) for public transportation, some bus stations should play the role of battery swapping station due to the limited travel range of e-Buses. In this study, we consider the problem of locating battery swapping stations for e-Buses on a passenger bus traffic network. For this purpose, we propose three integer programming models (set-covering-based model, flow-based model and path-based model) to model the problem of minimizing the number of stations needed. The models are applied and tested on the current bus routes in the Seoul metropolitan area of South Korea.
An immunohistochemical staining technique with the D2-40 antibody was undertaken to examine the functional and morphological features of lymphatic networks in tissue sections and whole-mount preparations of normal nasal mucosa and ethmoid sinus mucosa. In normal nasal mucosa, most lymphatic vessels were found in the superficial mucosa beneath the epithelial layer. Some of these vessels were dilated, whereas others were compressed and had a slit-like lumen. Whole-mount preparations revealed the extent of lymphatic vessels in normal ethmoid sinus mucosa. A network of lymphatic vessels was mainly found in the subepithelial layer, where lymphatic vessels represented rich networks, possessing antler-like branches and typical blind ends. However, these lymphatic networks were not arranged in the form of lymphangion chains, with each lymphangion consisting of a contractile compartment and valve. Thus, recognition of the distinctive features of the lymphatic network in normal nasal and sinus mucosa might aid investigations of lymphatic involvement in sinonasal diseases, such as rhinitis, sinusitis, and malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.