To improve the anticolitic efficacy of 5-aminosalicylic acid (5-ASA), a colon-specific mutual prodrug of 5-ASA was designed. 5-ASA was coupled to procainamide (PA), a local anesthetic, via an azo bond to prepare 5-(4-{[2-(diethylamino)ethyl]carbamoyl}phenylazo)salicylic acid (5-ASA-azo-PA). 5-ASA-azo-PA was cleaved to 5-ASA and PA up to about 76% at 10 h in the cecal contents while remaining stable in the small intestinal contents. Oral gavage of 5-ASA-azo-PA and sulfasalazine, a colon-specific prodrug currently used in clinic, to rats showed similar efficiency in delivery of 5-ASA to the large intestine, and PA was not detectable in the blood after 5-ASA-azo-PA administration. Oral gavage of 5-ASA-azo-PA alleviated 2,4,6-trinitrobenzenesulfonic acid-induced rat colitis. Moreover, combined intracolonic treatment with 5-ASA and PA elicited an additive ameliorative effect. Furthermore, combined treatment with 5-ASA and PA additively inhibited nuclear factor-kappaB (NFκB) activity in human colon carcinoma cells and inflamed colonic tissues. Finally, 5-ASA-azo-PA administered orally was able to reduce inflammatory mediators, NFκB target gene products, in the inflamed colon. 5-ASA-azo-PA may be a colon-specific mutual prodrug acting against colitis, and the mutual anticolitic effects occurred at least partly through the cooperative inhibition of NFκB activity.
Celecoxib is a selective cyclooxygenase-2 inhibitor applied to the treatment of arthritis. Repositioning the anti-inflammatory drug as an anti-inflammatory bowel disease drug has obstacles such as controversial anti-colitic efficacy and potential side effects. We examined whether colonic delivery of celecoxib could circumvent the therapeutic limitations. N-succinylglutam-1-yl celecoxib (SG1C), a colon-specific prodrug of celecoxib), was administered orally to rats with colitis and the anti-inflammatory activity and pharmacologic mechanisms were investigated. SG1C alleviated the colonic injury and lowered myeloperoxidase activity in the inflamed colonic tissues much more effectively than conventional celecoxib. While suppressing expression of pro-inflammatory nuclear factor kappaB gene products including cyclooxygenase-2, SG1C elevated an anti-inflammatory nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2) and its target gene product heme oxygenase (HO)-1 in the inflamed colon. In contrast, no significant molecular effects were observed with conventional celecoxib. Unlike conventional celecoxib, SG1C did not lower the serum level of 6-keto-PGF1α, an inverse indicator of cardiovascular adverse effects. Collectively, colonic delivery of celecoxib, likely improving therapeutic and toxicological properties of celecoxib, may be a feasible pharmaceutical strategy to therapeutically switch celecoxib to an anti-colitic drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.