Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, eddy-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that eddy currents are suppressed (e.g., 500 nm-1 μm for megahertz frequencies), while simultaneously achieving overall core thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a core of substantial overall thickness (tens to hundreds of micrometers) comprised of multiple, stacked permalloy (Ni 80 Fe 20 ) nanolaminations. Tests of toroidal inductors with nanolaminated cores showed negligible eddy-current loss relative to total core loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these cores, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the core and converter output power level exceeding 5 W was achieved.Index Terms-Eddy-current loss suppression, high-flux and high-frequency (HFHF) operation, laminated magnetic alloy.
We report microfabricated toroidal inductors with nanolaminated ferromagnetic metallic cores for chip-scale, high-power switching converters. The fabrication process of the toroidal inductor is based on individual manufacturing of partial windings (i.e. bottom and vertical conductors) and nanolaminated magnetic core, and integrating them by means of a drop-in approach. The nanolaminated ferromagnetic metallic cores presented in this paper consist of many multilayers of electrodeposited CoNiFe films, each layer with sub-micron thickness, with a total core thickness exceeding tens of microns. The beneficial magnetic properties (i.e. high saturation flux density and low coercivity) of CoNiFe alloys are well suited for chip-scale inductors as they achieve both large energy storage capacity as well as minimized volumetric core losses at high operating frequencies due to their nanolaminated structure. A drop-in integration approach, introduced to combine the microfabricated toroidal inductor windings with the magnetic cores, allows ease of integration. An advantage of this hybrid approach over monolithic fabrication in this application is the potential use of a wide variety of core materials, both microfabricated and bulk-fabricated, and which may or may not ultimately be CMOS-compatible. Exploiting this drop-in approach, 30-turn-and 50-turn-toroidal inductors integrated with nanolaminated CoNiFe cores, having 10 mm outer diameter and 1 mm thickness, have been successfully developed. Both types of inductors exhibit inductances higher than 1 µH at frequencies up to tens of MHz, showing ten times the inductance of an air core device with the same nominal geometry. The peak quality factor of the 30-turn-toroidal inductor reaches 18 at 1 MHz.
This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300-1000 nm thick metallic alloys (i.e. Ni 80 Fe 20 or Co 44 Ni 37 Fe 19) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50-100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500-1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc-dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors.
A MEMS lamination technology based on sequential multilayer electrodeposition is presented. The process comprises three main steps: (1) automated sequential electrodeposition of permalloy (Ni 80 Fe 20) structural and copper sacrificial layers to form multilayer structures of significant total thickness; (2) fabrication of polymeric anchor structures through the thickness of the multilayer structures and (3) selective removal of copper. The resulting structure is a set of air-insulated permalloy laminations, the separation of which is sustained by insulating polymeric anchor structures. Individual laminations have precisely controllable thicknesses ranging from 500 nm to 5 µm, and each lamination layer is electrically isolated from adjacent layers by narrow air gaps of similar scale. In addition to air, interlamination insulators based on polymers are investigated. Interlamination air gaps with very high aspect ratio (>1:100) can be filled with polyvinylalcohol and polydimethylsiloxane. The laminated structures are characterized using scanning electron microscopy and atomic force microscopy to directly examine properties such as the roughness and the thickness uniformity of the layers. In addition, the quality of the electrical insulation between the laminations is evaluated by quantifying the eddy current within the sample as a function of frequency. Fabricated laminations are comprised of uniform, smooth (surface roughness <100 nm) layers with effective electrical insulation for all layer thicknesses and insulator approaches studied. Such highly laminated structures have potential uses ranging from energy conversion to applications where composite materials with highly anisotropic mechanical or thermal properties are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.