In seasonal environments, the main selection pressure on the timing of reproduction (the ultimate factor) is synchrony between o¡spring requirements and food availability. However, reproduction is initiated much earlier than the time of maximum food requirement of the o¡spring. Individuals should therefore start reproduction in response to cues (the proximate factors), available in the environment of reproductive decision making, which predict the later environment of selection. With increasing spring temperatures over the past decades, vegetation phenology has advanced, with a concomitant advancement in the reproduction of some species at higher trophic levels. However, a mismatch between food abundance and o¡spring needs may occur if changes in the environment of decision making do not match those in the environment of selection. Date of egg laying in a great tit (Parus major) population has not advanced over a 23-year period, but selection for early laying has intensi¢ed. We believe that this is the ¢rst documented case of an adaptive response being hampered because a changing abiotic factor a¡ects the environment in which a reproductive decision is made di¡erently from the environment in which selection occurs.
Individual animals differ in the way they cope with challenges in their environment, comparable with variation in human personalities. The proximate basis of variation in personality traits has received considerable attention, and one general finding is that personality traits have a substantial genetic basis. This poses the question of how variation in personality is maintained in natural populations. We show that selection on a personality trait with high heritability fluctuates across years within a natural bird population. Annual adult survival was related to this personality trait (behaviour in novel environments) but the effects were always opposite for males and females, and reversed between years. The number of offspring surviving to breeding was also related to their parents' personalities, and again selection changed between years. The observed annual changes in selection pressures coincided with changes in environmental conditions (masting of beeches) that affect the competitive regimes of the birds. We expect that the observed fluctuations in environmental factors lead to fluctuations in competition for space and food, and these, in association with variations in population density, lead to a variation in selection pressure, which maintains genetic variation in personalities.
For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.