Individual animals differ in the way they cope with challenges in their environment, comparable with variation in human personalities. The proximate basis of variation in personality traits has received considerable attention, and one general finding is that personality traits have a substantial genetic basis. This poses the question of how variation in personality is maintained in natural populations. We show that selection on a personality trait with high heritability fluctuates across years within a natural bird population. Annual adult survival was related to this personality trait (behaviour in novel environments) but the effects were always opposite for males and females, and reversed between years. The number of offspring surviving to breeding was also related to their parents' personalities, and again selection changed between years. The observed annual changes in selection pressures coincided with changes in environmental conditions (masting of beeches) that affect the competitive regimes of the birds. We expect that the observed fluctuations in environmental factors lead to fluctuations in competition for space and food, and these, in association with variations in population density, lead to a variation in selection pressure, which maintains genetic variation in personalities.
We investigated whether individual great tits, Parus major, vary consistently in their exploratory behaviour in a novel environment and measured the repeatability and heritability of this trait. Wild birds were caught in their natural habitat, tested in the laboratory in an open field test on the following morning, then released at the capture site. We measured individual consistency of exploratory behaviour for recaptured individuals (repeatability) and estimated the heritability with parent-offspring regressions and sibling analyses. Measures of exploratory behaviour of individuals at repeated captures were consistent in both sexes and study areas (repeatabilities ranged from 0.27 to 0.48). Exploration scores did not differ between the sexes, and were unrelated to age, condition at fledging or condition during measurement. Heritability estimates were 0.22-0.41 (parent-offspring regressions) and 0.37-0.40 (sibling analyses). We conclude that (1) consistent individual variation in open field behaviour exists in individuals from the wild, and (2) this behavioural variation is heritable. This is one of the first studies showing heritable variation in a behavioural trait in animals from the wild, and poses the question of how this variation is maintained under natural conditions.
Dispersal is a major determinant of the dynamics and genetic structure of populations, and its consequences depend not only on average dispersal rates and distances, but also on the characteristics of dispersing and philopatric individuals. We investigated whether natal dispersal correlated with a predisposed behavioural trait: exploratory behaviour in novel environments. Wild great tits were caught in their natural habitat, tested the following morning in the laboratory using an open field test and released at the capture site. Natal dispersal correlated positively with parental and individual exploratory behaviour, using three independent datasets. First, fast-exploring parents had offspring that dispersed furthest. Second, immigrants were faster explorers than locally born birds. Third, post-fledging movements, comprising a major proportion of the variation in natal dispersal distances, were greater for fast females than for slow females. These findings suggest that parental behaviour influenced offspring natal dispersal either via parental behaviour per se (e.g. via post-fledging care) or by affecting the phenotype of their offspring (e.g. via their genes). Because this personality trait has a genetic basis, our results imply that genotypes differ in their dispersal distances. Therefore, the described patterns have profound consequences for the genetic composition of populations.
Behaviour under conditions of mild stress shows consistent patterns in all vertebrates: exploratory behaviour, boldness, aggressiveness covary in the same way. The existence of highly consistent individual variation in these behavioural strategies, also referred to as personalities or coping styles, allows us to measure the behaviour under standardized conditions on birds bred in captivity, link the standardized measurements to the behaviour under natural conditions and measure natural selection in the field. We have bred the great tit (Parus major), a classical model species for the study of behaviour under natural conditions, in captivity. Here, we report a realized heritability of 54 +/- 5% for early exploratory behaviour, based on four generations of bi-directional artificial selection. In addition to this, we measured hand-reared juveniles and their wild-caught parents in the laboratory. The heritability found in the mid-offspring-mid-parent regression was significantly different from zero. We have thus established the presence of considerable amounts of genetic variation for personality types in a wild bird.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.