We investigated whether individual great tits, Parus major, vary consistently in their exploratory behaviour in a novel environment and measured the repeatability and heritability of this trait. Wild birds were caught in their natural habitat, tested in the laboratory in an open field test on the following morning, then released at the capture site. We measured individual consistency of exploratory behaviour for recaptured individuals (repeatability) and estimated the heritability with parent-offspring regressions and sibling analyses. Measures of exploratory behaviour of individuals at repeated captures were consistent in both sexes and study areas (repeatabilities ranged from 0.27 to 0.48). Exploration scores did not differ between the sexes, and were unrelated to age, condition at fledging or condition during measurement. Heritability estimates were 0.22-0.41 (parent-offspring regressions) and 0.37-0.40 (sibling analyses). We conclude that (1) consistent individual variation in open field behaviour exists in individuals from the wild, and (2) this behavioural variation is heritable. This is one of the first studies showing heritable variation in a behavioural trait in animals from the wild, and poses the question of how this variation is maintained under natural conditions.
Behaviour under conditions of mild stress shows consistent patterns in all vertebrates: exploratory behaviour, boldness, aggressiveness covary in the same way. The existence of highly consistent individual variation in these behavioural strategies, also referred to as personalities or coping styles, allows us to measure the behaviour under standardized conditions on birds bred in captivity, link the standardized measurements to the behaviour under natural conditions and measure natural selection in the field. We have bred the great tit (Parus major), a classical model species for the study of behaviour under natural conditions, in captivity. Here, we report a realized heritability of 54 +/- 5% for early exploratory behaviour, based on four generations of bi-directional artificial selection. In addition to this, we measured hand-reared juveniles and their wild-caught parents in the laboratory. The heritability found in the mid-offspring-mid-parent regression was significantly different from zero. We have thus established the presence of considerable amounts of genetic variation for personality types in a wild bird.
For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species.
Phenology refers to the periodic appearance of life-cycle events and currently receives abundant attention as the effects of global change on phenology are so apparent. Phenology as a discipline observes these events and relates their annual variation to variation in climate. But phenology is also studied in other disciplines, each with their own perspective. Evolutionary ecologists study variation in seasonal timing and its fitness consequences, whereas chronobiologists emphasize the periodic nature of life-cycle stages and their underlying timing programmes (e.g. circannual rhythms). The (neuro-) endocrine processes underlying these life-cycle events are studied by physiologists and need to be linked to genes that are explored by molecular geneticists. In order to fully understand variation in phenology, we need to integrate these different perspectives, in particular by combining evolutionary and mechanistic approaches. We use avian research to characterize different perspectives and to highlight integration that has already been achieved. Building on this work, we outline a route towards uniting the different disciplines in a single framework, which may be used to better understand and, more importantly, to forecast climate change impacts on phenology.
Polymorphisms in several neurotransmitter-associated genes have been associated with variation in human personality traits. Among the more promising of such associations is that between the human dopamine receptor D4 gene (Drd4) variants and novelty-seeking behaviour. However, genetic epistasis, genotypeenvironment interactions and confounding environmental factors all act to obscure genotype-personality relationships. Such problems can be addressed by measuring personality under standardized conditions and by selection experiments, with both approaches only feasible with non-human animals. Looking for similar Drd4 genotype-personality associations in a free-living bird, the great tit (Parus major), we detected 73 polymorphisms (66 SNPs, 7 indels) in the P. major Drd4 orthologue. Two of the P. major Drd4 gene polymorphisms were investigated for evidence of association with novelty-seeking behaviour: a coding region synonymous single nucleotide polymorphism (SNP830) and a 15 bp indel (ID15) located 5 0 to the putative transcription initiation site. Frequencies of the three Drd4 SNP830 genotypes, but not the ID15 genotypes, differed significantly between two P. major lines selected over four generations for divergent levels of 'early exploratory behaviour' (EEB). Strong corroborating evidence for the significance of this finding comes from the analysis of free-living, unselected birds where we found a significant association between SNP830 genotypes and differing mean EEB levels. These findings suggest that an association between Drd4 gene polymorphisms and animal personality variation predates the divergence of the avian and mammalian lineages. Furthermore, this work heralds the possibility of following microevolutionary changes in frequencies of behaviourally relevant Drd4 polymorphisms within populations where natural selection acts differentially on different personality types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.