The advancement of tissue engineering is contingent upon the development and implementation of advanced biomaterials. Conductive polymers have demonstrated potential for use as a medium for electrical stimulation, which has shown to be beneficial in many regenerative medicine strategies including neural and cardiac tissue engineering. Melanins are naturally occurring pigments that have previously been shown to exhibit unique electrical properties. This study evaluates the potential use of melanin films as a semiconducting material for tissue engineering applications. Melanin thin films were produced by solution processing and the physical properties were characterized. Films were molecularly smooth with a roughness (Rms) of 0.341 nm and a conductivity of 7.00 ± 1.10 × 10−5 S cm−1 in the hydrated state. In vitro biocompatibility was evaluated by Schwann cell attachment and growth as well as neurite extension in PC12 cells. In vivo histology was evaluated by examining the biomaterial–tissue response of melanin implants placed in close proximity to peripheral nerve tissue. Melanin thin films enhanced Schwann cell growth and neurite extension compared to collagen films in vitro. Melanin films induced an inflammation response that was comparable to silicone implants in vivo. Furthermore, melanin implants were significantly resorbed after 8 weeks. These results suggest that solution-processed melanin thin films have the potential for use as a biodegradable semiconducting biomaterial for use in tissue engineering applications.
Elastomeric networks are increasingly being investigated for a variety of biomedical applications including drug delivery and tissue engineering. However, in some cases, their preparation requires the use of harsh processing conditions (e.g., high temperature), which limits their biomedical application. Herein, we demonstrate the ability to form elastomeric networks from poly(glycerol-co-sebacate) acrylate (PGSA) under mild conditions while preserving a wide range of physical properties. These networks presented a Young's modulus between 0.05 and 1.38 MPa, an ultimate strength from 0.05 to 0.50 Mpa, and elongation at break between 42% and 189% strain, by varying the degree of acrylation (DA) of PGSA. The in vitro enzymatic and hydrolytic degradation of the polymer networks was dependent on the DA. The copolymerization of poly(ethylene glycol) diacrylate with PGSA allowed for an additional control of mechanical properties and swelling ratios in an aqueous environment, as well as enzymatic and hydrolytic degradation. Photocured PGSA networks demonstrated in vitro biocompatibility as judged by sufficient human primary cell adherence and subsequent proliferation into a confluent monolayer. These photocurable degradable elastomers could have potential application for the encapsulation of temperature-sensitive factors and cells for tissue engineering.
We have developed a family of synthetic biodegradable polymers that are composed of structural units endogenous to the human metabolism, designated poly(polyol sebacates) (PPS) polymers. Material properties of PPS polymers can be tuned by altering the polyol monomer and reacting stiochiometric ratio of sebacic acid. These thermoset networks exhibited tensile Young's moduli ranging from 0.37 ± 0.08 to 378 ± 33 MPa with maximum elongations at break from 10.90 ± 1.37 to 205.16 ± 55.76%, and glass-transition temperatures ranged from ~7 to 46 °C. In vitro degradation under physiological conditions was slower than in vivo degradation rates observed for some PPS polymers. PPS polymers demonstrated similar in vitro and in vivo biocompatibility compared to poly (L-lactic-co-glycolic acid) (PLGA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.