All patients undergoing CI candidacy testing should be tested in both quiet and noise conditions. For those who qualify only in noise, our results demonstrate that cochlear implantation typically improves hearing both in quiet and noise.
Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.
Zebrafish have emerged as a powerful biological system for drug development against hearing loss. Zebrafish hair cells, contained within neuromasts along the lateral line, can be damaged with exposure to ototoxins, and therefore, pre-exposure to potentially otoprotective compounds can be a means of identifying promising new drug candidates. Unfortunately, anatomical assays of hair cell damage are typically low-throughput and labor intensive, requiring trained experts to manually score hair cell damage in fluorescence or confocal images. To enhance throughput and consistency, our group has developed an automated damage-scoring algorithm based on machine-learning techniques that produce accurate damage scores, eliminate potential operator bias, provide more fidelity in determining damage scores that are between two levels, and deliver consistent results in a fraction of the time required for manual analysis. The system has been validated against trained experts using linear regression, hypothesis testing, and the Pearson's correlation coefficient. Furthermore, performance has been quantified by measuring mean absolute error for each image and the time taken to automatically compute damage scores. Coupling automated analysis of zebrafish hair cell damage to behavioral assays for ototoxicity produces a novel drug discovery platform for rapid translation of candidate drugs into preclinical mammalian models of hearing loss.
ObjectiveHospital systems and regulating agencies enforce strict guidelines barring personal items from entering the operating room (OR) – touting surgical site infections (SSIs) and patient safety as the rationale. We sought to determine whether or not evidence supporting this recommendation exists by reviewing available literature.Background dataRules and guidelines that are not evidence based may lead to increased hospital expenses and limitations on healthcare provider autonomy.MethodsPubMed, Embase, Scopus, Cochrane Library, Web of Science, and CINAHL were searched in order to find articles that correlated personal items in the OR to documented SSIs. Articles that satisfied the following criteria were included: (1) studies looking at personal items in the OR, such as handbags, purses, badges, pagers, backpacks, jewelry phones, and eyeglasses, but not just OR equipment; and (2) the primary outcome measure was infection at the surgical site.ResultsSeventeen articles met inclusion criteria and were evaluated. Of the 17, the majority did not determine if personal items increased risk for SSIs. Only one article examined the correlation between a personal item near the operative site and SSI, concluding that wedding rings worn in the OR had no impact on SSIs. Most studies examined colonization rates on personal items as potential infection risk; however, no personal items were causally linked to SSI in any of these studies.ConclusionThere is no objective evidence to suggest that personal items in the OR increase risk for SSIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.