Ellis M, Chambers JD, Gwynne RM, Bornstein JC. Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 304: G749 -G761, 2013. First published February 7, 2013 doi:10.1152/ajpgi.00358.2012.-Segmentation is an important process in nutrient mixing and absorption; however, the mechanisms underlying this motility pattern are poorly understood. Segmentation can be induced by luminal perfusion of fatty acid in guinea pig small intestine in vitro and mimicked by the serotonin (5-HT) reuptake inhibitor fluoxetine (300 nM) and by cholecystokinin (CCK). Serotonergic and CCK-related mechanisms underlying nutrient-induced segmentation were investigated using selective 5-HT and CCK receptor antagonists on isolated segments of small intestine luminally perfused with 1 mM decanoic acid. Motility patterns were analyzed using video imaging and spatiotemporal maps. Segmenting activity mediated by decanoic acid was depressed following luminal application of the 5-HT receptor antagonists granisetron (5-HT3, 1 M) and SB-207266 (5-HT 4, 10 nM) and the CCK receptor antagonists devazepide (CCK-1, 300 nM) and L-365260 (CCK-2, 300 nM), but these antagonists did not further depress segmentation when combined. The P2 receptor antagonist pyridoxal phosphate-6-azophenyl-2=,4=-disulfonate (10 M) had no effect on activity. Serosal application of 5-HT antagonists had little effect on segmentation in the duodenum but reduced activity in the jejunum when granisetron and SB-207266 were applied together. These results reveal that 5-HT3 and 5-HT4 receptors, as well as CCK-1 and CCK-2 receptors, are critical in regulating decanoic acid-induced segmentation. Computational simulation indicated that these data are consistent with decanoic acid activating two pathways in the mucosa that converge within the enteric neural circuitry, while contraction-induced release of 5-HT from the mucosa provides feedback into the neural circuit to set the time course of the overall contractile activity. intestinal motility; decanoic acid; segmentation; serotonin; 5-HT3 receptors; 5-HT4 receptors; CCK-1 receptors; CCK-2 receptors DIGESTION AND MIXING of intestinal contents are accomplished through a complex, yet poorly understood, pattern of motility, called segmentation (11). Segmentation is a major feature of the small intestine in the "fed state" after a meal and comprises rhythmic local constrictions in the intestinal smooth muscle that are stationary or propagate only a short distance and occur as isolated bursts of motor activity. Despite its importance, the mechanisms controlling segmentation are yet to be determined.Fed-state motor activity consists of a mixture of propulsive and segmenting contractions, with the predominant type of contraction being determined, in part, by the nutrient composition of the meal. For example, nonnutritive meals produce predominantly propulsive contractile activity (propagating contractions, which propel content along the intestine) in the duodenum a...
After a meal, the gastrointestinal tract exhibits a set of behaviours known as the fed state. A major feature of the fed state is a little understood motor pattern known as segmentation, which is essential for digestion and nutrient absorption. Segmentation manifests as rhythmic local constrictions that do not propagate along the intestine. In guinea-pig jejunum in vitro segmentation constrictions occur in short bursts together with other motor patterns in episodes of activity lasting 40–60 s and separated by quiescent episodes lasting 40–200 s. This activity is induced by luminal nutrients and abolished by blocking activity in the enteric nervous system (ENS). We investigated the enteric circuits that regulate segmentation focusing on a central feature of the ENS: a recurrent excitatory network of intrinsic sensory neurons (ISNs) which are characterized by prolonged after-hyperpolarizing potentials (AHPs) following their action potentials. We first examined the effects of depressing AHPs with blockers of the underlying channels (TRAM-34 and clotrimazole) on motor patterns induced in guinea-pig jejunum, in vitro, by luminal decanoic acid. Contractile episode durations increased markedly, but the frequency and number of constrictions within segmenting bursts and quiescent period durations were unaffected. We used these observations to develop a computational model of activity in ISNs, excitatory and inhibitory motor neurons and the muscle. The model predicted that: i) feedback to ISNs from contractions in the circular muscle is required to produce alternating activity and quiescence with the right durations; ii) transmission from ISNs to excitatory motor neurons is via fast excitatory synaptic potentials (EPSPs) and to inhibitory motor neurons via slow EPSPs. We conclude that two rhythm generators regulate segmentation: one drives contractions within segmentation bursts, the other the occurrence of bursts. The latter depends on AHPs in ISNs and feedback to these neurons from contraction of the circular muscle.
Intrinsic sensory neurons (ISNs) of the enteric nervous system respond to stimuli such as muscle tension, muscle length, distortion of the mucosa, and the chemical content in the lumen. ISNs form recurrent networks that probably drive many intestinal motor patterns and reflexes. ISNs express a large number of voltage- and calcium-gated ion channels, some of which are modified by inflammation or repeated physiological stimuli, but how interactions between different ionic currents in ISNs produce both normal and pathological behaviors in the intestine remains unclear. We constructed a model of ISNs including voltage-gated sodium and potassium channels, N-type calcium channels, big conductance calcium-dependent potassium (BK) channels, calcium-dependent nonspecific cation channels (NSCa), intermediate conductance calcium-dependent potassium (IK) channels, hyperpolarization-activated cation (Ih) channels, and internal calcium dynamics. The model was based on data from the literature and our electrophysiological studies. The model reproduced responses to short or long depolarizing current pulses and responses to long hyperpolarizing current pulses. Sensitivity analysis showed that Ih, IK, NSCa, and BK have the largest influence on the number of action potentials observed during prolonged depolarizations. The model also predicts that changes to the voltage of activation for Ih have a large influence on excitability, but changes to the time constant of activation for Ih have a minor effect. Our model identifies how interactions between different iconic currents influence the excitability of ISNs and highlights an important role for Ih in enteric neuroplasticity resulting from disease.
Secretomotor neurons, immunoreactive for vasoactive intestinal peptide (VIP), are important in controlling chloride secretion in the small intestine. These neurons form functional synapses with other submucosal VIP neurons and transmit via slow excitatory postsynaptic potentials (EPSPs). Thus they form a recurrent network with positive feedback. Intrinsic sensory neurons within the submucosa are also likely to form recurrent networks with positive feedback, provide substantial output to VIP neurons, and receive input from VIP neurons. If positive feedback within recurrent networks is sufficiently large, then neurons in the network respond to even small stimuli by firing at their maximum possible rate, even after the stimulus is removed. However, it is not clear whether such a mechanism operates within the recurrent networks of submucous neurons. We investigated this question by performing computer simulations of realistic models of VIP and intrinsic sensory neuron networks. In the expected range of electrophysiological properties, we found that activity in the VIP neuron network decayed slowly after cessation of a stimulus, indicating that positive feedback is not strong enough to support the uncontrolled firing state. The addition of intrinsic sensory neurons produced a low stable firing rate consistent with the common finding that basal secretory activity is, in part, neurogenic. Changing electrophysiological properties enables these recurrent networks to support the uncontrolled firing state, which may have implications with hypersecretion in the presence of enterotoxins such as cholera-toxin.
Segmentation in the guinea pig small intestine consists of a number of discrete motor patterns including rhythmic stationary contractions that occur episodically at specific locations along the intestine. The enteric nervous system regulates segmentation, but the exact circuit is unknown. Using simple computer models, we investigated possible circuits. Our computational model simulated the mean neuron firing rate in the feedforward ascending and descending reflex pathways. A stimulus-evoked pacemaker was located in the afferent pathway or in a feedforward pathway. Output of the feedforward pathways was fed into a simple model to determine the response of the muscle. Predictions were verified in vitro by using guinea pig jejunum, in which segmentation was induced with luminal fatty acid. In the computational model, local stimuli produced an oral contraction and anal dilation, similar to in vitro responses to local distension, but did not produce segmentation. When the stimulus was distributed, representing a nutrient load, the result was either a tonic response or globally synchronized oscillations. However, when we introduced local variations in synaptic coupling, stationary contractions occurred around these locations. This predicts that severing the ascending and descending pathways will induce stationary contractions. An acute lesion in our in vitro model significantly increased the number of stationary contractions immediately oral and anal to the lesion. Our results suggest that spatially localized rhythmic contractions arise from a local imbalance between ascending excitatory and descending inhibitory muscle inputs and require a distributed stimulus and a rhythm generator in the afferent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.