Experimental progress in investigating normal and disordered gastric motility is increasingly being complimented by sophisticated multi-scale modeling studies. Mathematical modeling has become a valuable tool in this effort, as there is an ever-increasing need to gain an integrative and quantitative understanding of how physiological mechanisms achieve coordinated functions across multiple biophysical scales. These interdisciplinary efforts have been particularly notable in the area of gastric electrophysiology, where they are beginning to yield a comprehensive and integrated in-silico organ modeling framework, or ‘virtual stomach’. At the cellular level, a number of biophysically-based mathematical cell models have been developed, and these are now being applied in areas including investigations of gastric electrical pacemaker mechanisms, smooth muscle electrophysiology, and electromechanical coupling. At the tissue level, micro-structural models are being creatively developed and employed to investigate clinically significant questions, such as the functional effects of ICC degradation on gastrointestinal electrical activation. At the organ level, high-resolution electrical mapping and modeling studies are combining to provide improved insights into normal and dysrhythmic gastric electrical activation. These efforts are also enabling detailed forward and inverse modeling studies at the ‘whole body’ level, with implications for diagnostic techniques for gastric dysrhythmias. These recent advances, together with several others highlighted in this review, collectively demonstrate a powerful trend toward applying mathematical models to effectively investigate structure-function relationships and overcome multi-scale challenges in basic and clinical gastrointestinal research.