Perturbations in gut flora and in inflammatory cell activity alter sensory neurotransmitter content in the colon, and result in altered visceral perception. Changes in gut flora may be a basis for the variability of abdominal symptoms observed in functional gastrointestinal disorders and may be prevented by specific probiotic administration.
IntroductionProbiotics are live non-pathogenic commensal organisms that promote beneficial health effects when ingested [1]. Organisms used as probiotics are most frequently of the Lactobacillus or Bifidobacterium species, and clinically beneficial effects of probiotics have been described in travellers' diarrhea, irritable bowel syndrome and inflammatory bowel disease [2][3][4][5][6]. Although experimental modulation of intestinal motility [7] and visceral pain [7][8][9]
Abstract
Probiotics are live non-pathogenic commensal organisms that exert therapeutic effects in travellers' diarrhea, irritable bowel syndrome and inflammatory bowel disease. Little is known about mechanisms of action of commensal bacteria on intestinal motility and motilityinduced pain. It has been proposed that probiotics affect intestinal nerve function, but direct evidence for this has thus far been lacking. We hypothesized that probiotic effects might be mediated by actions on colonic intrinsic sensory neurons. We first determined whether
Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.
. Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol 96: 998 -1010, 2006; doi:10.1152/jn.00204.2006. We recorded from myenteric AH/Dogiel type II cells, demonstrated mechanosensitive responses, and characterized their basic properties. Recordings were obtained using the mouse longitudinal muscle myenteric plexus preparation with patch-clamp and sharp intracellular electrodes. The neurons had an action potential hump and a slow afterhyperpolarization (AHP) current. The slow AHP was carried by intermediate conductance Ca 2ϩ -dependent K ϩ -channel currents sensitive to charybdotoxin and clotrimazole. All possessed a hyperpolarization-activated current that was blocked by extracellular cesium. They also expressed a TTX-resistant Na ϩ current with an onset near the resting potential. Pressing on the ganglion containing the patched neuron evoked depolarizing potentials in 17/18 cells. The potentials persisted after synaptic transmission was blocked. Volleys of presynaptic electrical stimuli evoked slow excitatory postsynaptic potentials (EPSPs) in 9/11 sensory neurons, but 0/29 cells received fast EPSP input. The slow EPSP was generated by removal of a voltageinsensitive K ϩ current. Patch-clamp recording with a KMeSO 4 -containing, but not a conventional KCl-rich, intracellular solution reproduced the single-spike slow AHPs and low input resistances seen with sharp intracellular recording. Cell-attached recording of intermediate conductance potassium channels supported the conclusion that the single-spike slow AHP is an intrinsic property of intestinal AH/sensory neurons. Unitary current recordings also suggested that the slow AHP current probably does not contribute significantly to the high resting background conductance seen in these cells. The characterization of mouse myenteric sensory neurons opens the way for the study of their roles in normal and pathological physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.