The problem of coordination without a priori information about the environment is important in robotics. Applications vary from formation control to search and rescue. This paper considers the problem of search by a group of solitary robots: self-interested robots without a priori knowledge about each other, and with restricted communication capacity. When the capacity of robots to communicate is limited, they may obliviously search in overlapping regions (i.e. be subject to interference). Interference hinders robot progress, and strategies have been proposed in the literature to mitigate interference [1], [2]. Interaction of solitary robots has attracted much interest in robotics, but the problem of mitigating interference when time for search is limited remains an important area of research. We propose a coordination strategy based on the method of cellular decomposition [3] where we employ the concept of soft obstacles: a robot considers cells assigned to other robots as obstacles. The performance of the proposed strategy is demonstrated by means of simulation experiments. Simulations indicate the utility of the strategy in situations where a known upper bound on the search time precludes search of the entire environment.
This paper is concerned with distributed detection of central nodes in complex networks using closeness centrality. Closeness centrality plays an essential role in network analysis. Evaluating closeness centrality exactly requires complete knowledge of the network; for large networks, this may be inefficient, so closeness centrality should be approximated. Distributed tasks such as leader election can make effective use of centrality information for highly central nodes, but complete network information is not locally available. This paper refines a distributed centrality computation algorithm by You et al. [24] by pruning nodes which are almost certainly not most central. For example, in a large network, leave nodes can not play a central role. This leads to a reduction in the number of messages exchanged to determine the centrality of the remaining nodes. Our results show that our approach reduces the number of messages for networks which contain many prunable nodes. Our results also show that reducing the number of messages may have a positive impact on running time and memory size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.