Novelty detection requires models of normality to be learnt from training data known to be normal. The first model considered in this paper is a static model trained to detect novel events associated with changes in the vibration spectra recorded from a jet engine. We describe how the distribution of energy across the harmonics of a rotating shaft can be learnt by a support vector machine model of normality. The second model is a dynamic model partially learnt from data using an expectation-maximization-based method. This model uses a Kalman filter to fuse performance data in order to characterize normal engine behaviour. Deviations from normal operation are detected using the normalized innovations squared from the Kalman filter.
This study investigates the processing of sonar signals using neural networks for robust differentiation of commonly encountered features in indoor robot environments. The neural network can differentiate more targets with higher accuracy, improving on previously reported methods. It achieves this by exploiting the identifying features in the differential amplitude and time-of-flight (TOF) characteristics of these targets. Robustness tests indicate that the amplitude information is more crucial than TOF for reliable operation. The study suggests wider use of neural networks and amplitude information in sonar-based mobile robotics
This paper investigates the use of voting as a conflict-resolution technique for data analysis in robot programming. Voting represents an information-abstraction technique. It is argued that in some cases
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.