One of the major hurdles of Ni‐rich cathode materials Li1+x(NixCozMnz)wO2, y > 0.5 for lithium‐ion batteries is their low cycling stability especially for compositions with Ni ≥ 60%, which suffer from severe capacity fading and impedance increase during cycling at elevated temperatures (e.g., 45 °C). Two promising surface and structural modifications of these materials to alleviate the above drawback are (1) coatings by electrochemically inert inorganic compounds (e.g., ZrO2) or (2) lattice doping by cations like Zr4+, Al3+, Mg2+, etc. This paper demonstrates the enhanced electrochemical behavior of Ni‐rich material LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with a thin ZrO2 layer. The coating is produced by an easy and scalable wet chemical approach followed by annealing the material at ≥700 °C under oxygen that results in Zr doping. It is established that some ZrO2 remains even after annealing at ≥800 °C as a surface layer on NCM811. The main finding of this work is the enhanced cycling stability and lower impedance of the coated/doped NCM811 that can be attributed to a synergetic effect of the ZrO2 coating in combination with a zirconium doping.
▪ Abstract The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.
This paper is dedicated to studies of the electrochemical behavior, the structural and thermal features of the Ni-rich LiNi 0.5 Co 0.2 Mn 0.3 O 2 undoped and Al-doped (∼0.01 at.%) materials for positive electrodes of lithium batteries. We have found that structural characteristics of these materials are quite similar from the crystallographic point of view. It was demonstrated that Al substitution in the doped LiNi 0.5 Co 0.2 Mn 0.3 O 2 is preferred at Ni sites over Co sites, and the thermodynamic preference for Al 3+ substitutions follows the order: Ni>Co>Mn. The lower capacity fading of the Al-doped electrodes upon cycling and aging of the cells in a charged state (4.3 V) at 60 • C, as well as more stable mean voltage behavior, are likely due to the chemical and structural modifications of the electrode/solution interface. The Al-doped LiNi 0.5 Co 0.2 Mn 0.3 O 2 electrodes demonstrate also lower resistances of the surface film and charge-transfer as well as lower activation energies for the discharge process. From XPS studies we conclude that the modified stable and less resistive interface on the Al-doped particles comprises the Li + -ion conducting nano-sized centers like LiAlO 2 , AlF 3 , etc., which promote, to some extent, the Li + ionic transport to the bulk. A partial layered-to-spinel transformation was established upon cycling of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathodes.One of the major challenges in lithium batteries technology is, undoubtedly, the further improvement of battery components -electrodes, solutions, and separators. 1-7 Among several modern strategies to improve electrochemical performance and structural characteristics of materials for positive electrodes, doping has attracted the attention of scientists over the years. This is due to the effectiveness of dopants in stabilizing the structure of materials (even in minute amounts) and thus to increase the electrochemical cycling activity and to diminish the heat evolution of the electrodes in a charged state. A variety of dopant ions, like Co 2+ , Al 3+ , Ti 4+ , Zr 4+ , Zn 2+ , Fe 3+ , Cu 2+ , and Cr 3+ , has been used to improve the stability, morphology and microstructure of cathode materials, to enhance the electrode cycleability and rate capability, and to reduce capacity fading upon cycling. 8-13 For instance, doping of LiNi 0.5 Mn 0.5 O 2 with Co, Al, Ti resulted in decrease of the irreversible capacity loss and in almost no capacity fading of the doped electrodes. 14,15 In a systematic study of the Al-doped Ni-rich electrodes (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), which are promising materials for use in batteries for electromotive applications, the authors have shown high cycling stability of these electrodes upon accelerated testing. 16 Several other doping metals, such as silver, magnesium, cobalt, gallium, lanthanum, bismuth, 17-19 as well as non-metallic ions (boron, fluorine), 20,21 were also explored in an attempt to increase the electrochemical cycling behavior of cathodes (both of layered and spinel structures) and to reduce their in...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.