This paper is dedicated to studies of the electrochemical behavior, the structural and thermal features of the Ni-rich LiNi 0.5 Co 0.2 Mn 0.3 O 2 undoped and Al-doped (∼0.01 at.%) materials for positive electrodes of lithium batteries. We have found that structural characteristics of these materials are quite similar from the crystallographic point of view. It was demonstrated that Al substitution in the doped LiNi 0.5 Co 0.2 Mn 0.3 O 2 is preferred at Ni sites over Co sites, and the thermodynamic preference for Al 3+ substitutions follows the order: Ni>Co>Mn. The lower capacity fading of the Al-doped electrodes upon cycling and aging of the cells in a charged state (4.3 V) at 60 • C, as well as more stable mean voltage behavior, are likely due to the chemical and structural modifications of the electrode/solution interface. The Al-doped LiNi 0.5 Co 0.2 Mn 0.3 O 2 electrodes demonstrate also lower resistances of the surface film and charge-transfer as well as lower activation energies for the discharge process. From XPS studies we conclude that the modified stable and less resistive interface on the Al-doped particles comprises the Li + -ion conducting nano-sized centers like LiAlO 2 , AlF 3 , etc., which promote, to some extent, the Li + ionic transport to the bulk. A partial layered-to-spinel transformation was established upon cycling of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathodes.One of the major challenges in lithium batteries technology is, undoubtedly, the further improvement of battery components -electrodes, solutions, and separators. 1-7 Among several modern strategies to improve electrochemical performance and structural characteristics of materials for positive electrodes, doping has attracted the attention of scientists over the years. This is due to the effectiveness of dopants in stabilizing the structure of materials (even in minute amounts) and thus to increase the electrochemical cycling activity and to diminish the heat evolution of the electrodes in a charged state. A variety of dopant ions, like Co 2+ , Al 3+ , Ti 4+ , Zr 4+ , Zn 2+ , Fe 3+ , Cu 2+ , and Cr 3+ , has been used to improve the stability, morphology and microstructure of cathode materials, to enhance the electrode cycleability and rate capability, and to reduce capacity fading upon cycling. 8-13 For instance, doping of LiNi 0.5 Mn 0.5 O 2 with Co, Al, Ti resulted in decrease of the irreversible capacity loss and in almost no capacity fading of the doped electrodes. 14,15 In a systematic study of the Al-doped Ni-rich electrodes (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), which are promising materials for use in batteries for electromotive applications, the authors have shown high cycling stability of these electrodes upon accelerated testing. 16 Several other doping metals, such as silver, magnesium, cobalt, gallium, lanthanum, bismuth, 17-19 as well as non-metallic ions (boron, fluorine), 20,21 were also explored in an attempt to increase the electrochemical cycling behavior of cathodes (both of layered and spinel structures) and to reduce their in...
Amongst a number of different cathode materials, the layered nickel-rich LiNi y Co x Mn 1−y−x O 2 and the integrated lithium-rich xLi 2 MnO 3 ·(1 − x)Li[Ni a Co b Mn c ]O 2 (a + b + c = 1) have received considerable attention over the last decade due to their high capacities of~195 and~250 mAh·g −1 , respectively. Both materials are believed to play a vital role in the development of future electric vehicles, which makes them highly attractive for researchers from academia and industry alike. The review at hand deals with both cathode materials and highlights recent achievements to enhance capacity stability, voltage stability, and rate capability, etc. The focus of this paper is on novel strategies and established methods such as coatings and dopings.
We combine electromechanical measurements with ab initio density-functional calculations to settle the controversy about the origin of torsion-induced conductance oscillations in multiwall carbon nanotubes. Contrary to intuition, the observed oscillation period in multiwall tubes exhibits the same inverse-squared diameter dependence as in single-wall tubes with the same diameter. This finding suggests an intrawall origin of the oscillations and an effective electronic decoupling of the walls, which we confirm in calculations of multiwall nanotubes subject to differential torsion. We exclude the alternative origin of the conductance oscillations due to changes in the interwall registry, which would result in a different diameter dependence of the oscillation period.
Aluminum doped mixed metal oxides are popular positive electrode materials for Li-ion batteries. They are used extensively in many applications, yet their operation and limitations are not entirely understood. This work shows the advantage of using solid-state 7Li and 27Al NMR for monitoring the electrochemical properties of the doped nickel–cobalt oxide cathode material, LiNi0.8Co0.15Al0.05O2 (NCA), particularly during the first few charge/discharge cycles. The changes in the state of the material as lithium ions are intercalated and deintercalated during discharge and charge, respectively, are highlighted via the Li nuclei as a dynamic reporter and the Al nuclei as a static, material-embedded reporter. In particular, the NMR view of the cyclic change of Ni ions between paramagnetic and diamagnetic oxidation states is enhanced by monitoring both nuclei. Two protocols of cycling the NCA electrode are compared: one employing a smaller voltage window, cycled against graphite as anode, and one using a wider voltage window, cycled against a lithium metal anode. The NMR analysis unveils notable differences in the reversibility of the changes in the Ni oxidation states as charge carriers are shuttled in and out of the cathode material. The 27Al NMR data of the pristine material shows the existence of at least two distinct configurations of Ni ions around the Al dopant ions, suggesting coexistence of two disparate phases, which remain intact upon cycling. The protocol employing slower cycling versus Li anode delivers better cathode performance in the sense that more extensive relithiation occurs, and here, it is shown that the return of the local environments to their pristine electronic configurations is more complete. The 27Al and 7Li NMR results are integrated into a simple scheme exemplifying how better understanding of the local electronic changes in paramagnetic electrode materials can be captured in simple progressive plots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.