CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H(2)O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately -240 mV) and low-spin (approximately -110, -190 and -265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (E(m) = -80 mV) in the presence of NADH (E(m) = -320 mV) and an NADH-menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.
Anion and cation effects on the structural stability of lysozyme were investigated using differential scanning calorimetry. At low concentrations (<5 mM) anions and cations alter the stability of lysozyme but they do not follow the Hofmeister (or inverse Hofmeister) series. At higher concentrations protein stabilization follows the well-established Hofmeister series. Our hypothesis is that there are three mechanisms at work. At low concentrations the anions interact with charged side chains where the presence of the ion can alter the structural stability of the protein. At higher concentrations the low charge density anions perchlorate and iodide interact weakly with the protein. Their presence however reduces the Gibbs free energy required to hydrate the core of the protein that is exposed during unfolding therefore destabilizing the structure. At higher concentrations the high charge density anions phosphate and sulfate compete for water with the protein as it unfolds increasing the Gibbs free energy required to hydrate the newly exposed core of the protein therefore stabilizing the structure.
Terahertz spectroscopy was used to study the absorption of bovine serum albumin (BSA) in water. The Diamond Light Source operating in a low alpha mode generated coherent synchrotron radiation that covered a useable spectral bandwidth of 0.3-3.3 THz (10-110 cm(-1)). As the BSA concentration was raised, there was a nonlinear change in absorption inconsistent with Beer's law. At low BSA concentrations (0-1 mM), the absorption remained constant or rose slightly. Above a concentration of 1 mM BSA, a steady decrease in absorption was observed, which was followed by a plateau that started at 2.5 mM. Using a overlapping hydration layer model, the hydration layer was estimated to extend 15 Å from the protein. Calculation of the corrected absorption coefficient (αcorr) for the water around BSA by subtracting the excluded volume of the protein provides an alternative approach to studying the hydration layer that provides evidence for complexity in the population of water around BSA.
The ability of polyvalent anions to influence protein-protein interactions and protein net charge was investigated through solubility and turbidity experiments, determination of osmotic second virial coefficients (B 22 ) and zeta potential values for lysozyme solutions. B 22 values showed that all anions reduce protein-protein repulsion between positively charged lysozyme molecules and those anions with higher net valencies are more effective. The polyvalent anions pyrophosphate and tripolyphosphate were observed to induce protein reentrant condensation, which has been previously observed with negatively charged proteins in the presence of trivalent cations. Reentrant condensation is a phenomenon in which low concentrations of polyvalent ions induce protein precipitation, but further increasing polyvalent ion concentration causes the protein precipitate to resolubilise. Interestingly, citrate anion does not induce lysozyme reentrant condensation despite having a similar charge, size and shape to pyrophosphate. We observe qualitative differences in protein behaviour when compared against negatively charged proteins in solutions of trivalent cations. The poly-phosphate ions induce a much stronger protein-protein attraction, which correlates with the occurrence of a liquid-gel transition that replaces the liquid-liquid transition observed with trivalent cations. The results indicate solutions of polyphosphate ions provide a model system for exploring the link between the protein phase diagram and model interaction potentials and also highlight the importance ion-specific effects can have on protein solubility.
The interaction between sodium phytate and three proteins was studied using solubility experiments and differential scanning calorimetry (DSC) to assess structural stability. Lysozyme, which is positively charged at neutral pH, bound phytate by an electrostatic interaction. There was evidence that phytate cross-linked lysozyme molecules forcing them out of solution. Myoglobin and human serum albumin, which were neutral or negatively charged, respectively, displayed association rather than binding, and there was no complex formation. All of the proteins were structurally destabilized by the presence of phytate but were not denatured. From these findings, we predict that phytate would bind electrostatically to a wide variety of positively charged proteins in the stomach as well as to trypsin and chymotrypsin in the duodenum. Both binding reactions may compromise the digestion of the protein component in feed stuffs. Because the interaction between phytate and protein is electrostatic, the presence of anions, such as chloride, would nullify the antinutritional effect of phytate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.