The promise of single-objective light-sheet microscopy is to combine the convenience of standard single-objective microscopes with the speed, coverage, resolution and gentleness of light-sheet microscopes. We present DaXi, a single-objective light-sheet microscope design based on oblique plane illumination that achieves: (1) a wider field of view and high-resolution imaging via a custom remote focusing objective; (2) fast volumetric imaging over larger volumes without compromising image quality or necessitating tiled acquisition; (3) fuller image coverage for large samples via multi-view imaging and (4) higher throughput multi-well imaging via remote coverslip placement. Our instrument achieves a resolution of 450 nm laterally and 2 μm axially over an imaging volume of 3,000 × 800 × 300 μm. We demonstrate the speed, field of view, resolution and versatility of our instrument by imaging various systems, including Drosophila egg chamber development, zebrafish whole-brain activity and zebrafish embryonic development – up to nine embryos at a time.
Elucidating the developmental process of an organism will require the complete cartography of cellular lineages in the spatial, temporal, and molecular domains. We present Zebrahub, a comprehensive dynamic atlas of zebrafish embryonic development that combines single-cell sequencing time course data with light-sheet microscopy-based lineage reconstructions. Zebrahub is a foundational resource to study developmental processes at both transcriptional and spatiotemporal levels. It is publicly accessible as a web-based resource, providing an open-access collection of datasets and tools. Using this resource we shed new light on the pluripotency of Neuro-Mesodermal Progenitors (NMPs). We find that NMPs are pluripotent only during early axis elongation before becoming exclusively mesodermal progenitors. We attribute this restriction in NMP cell fate to emerging morphodynamic features that compartmentalize tissue motion.
Purpose: Automated segmentation of brain structures (objects) in MR three-dimensional (3D) images for quantitative analysis has been a challenge and probabilistic atlases (PAs) are among the most well-succeeded approaches. However, the existing models do not adapt to possible object anomalies due to the presence of a disease or a surgical procedure. Post-processing operation does not solve the problem, for example, tissue classification to detect and remove such anomalies inside the resulting segmentation mask, because segmentation errors on healthy tissues cannot be fixed. Such anomalies very often alter the shape and texture of the brain structures, making them different from the appearance of the model. In this paper, we present an effective and efficient adaptive probabilistic atlas, named AdaPro, to circumvent the problem and evaluate it on a challenging taskthe segmentation of the left hemisphere, right hemisphere, and cerebellum, without pons and medulla, in 3D MR-T1 brain images of Epilepsy patients. This task is challenging due to temporal lobe resections, artifacts, and the absence of contrast in some parts between the structures of interest. Methods: In AdaPro, we first build one probabilistic atlas per object of interest from a training set with normal 3D images and the corresponding 3D object masks. Second, we incorporate a texture classifier based on convex optimization which dynamically indicates the regions of the target 3D image where the PAs (shape constraints) should be further adapted. This strategy is mathematically more elegant and avoids problems with post-processing. Third, we add a new object-based delineation algorithm based on combinatorial optimization and diffusion filtering. AdaPro can then be used to locate and delineate the objects in the coordinate space of the atlas or of the test image. We also compare AdaPro with three other state-of-the-art methods: an statistical shape model based on synergistic object search and delineation, and two methods based on multi-atlas label fusion (MALF). Results: We evaluate the methods quantitatively on 3D MR-T1 brain images of 2T and 3T from epilepsy patients, before and after temporal lobe resections, and on the template and native coordinate spaces. The results show that AdaPro is considerably faster and consistently more accurate than the baselines with statistical significance in both coordinate spaces. Conclusion: AdaPro can be used as a fast and effective step for brain tissue segmentation and it can also be easily extended to segment subcortical brain structures. By choice of its components, probabilistic atlas, texture classifier, and delineation algorithm, it can also be extended to other organs and imaging modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.