Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, increased impulsivity and emotion dysregulation. Linkage analysis followed by fine-mapping identified variation in the gene coding for Latrophilin 3 (LPHN3), a putative adhesion-G protein-coupled receptor, as a risk factor for ADHD. In order to validate the link between LPHN3 and ADHD, and to understand the function of LPHN3 in the etiology of the disease, we examined its ortholog lphn3.1 during zebrafish development. Loss of lphn3.1 function causes a reduction and misplacement of dopamine-positive neurons in the ventral diencephalon and a hyperactive/impulsive motor phenotype. The behavioral phenotype can be rescued by the ADHD treatment drugs methylphenidate and atomoxetine. Together, our results implicate decreased Lphn3 activity in eliciting ADHD-like behavior, and demonstrate its correlated contribution to the development of the brain dopaminergic circuitry.
The promise of single-objective light-sheet microscopy is to combine the convenience of standard single-objective microscopes with the speed, coverage, resolution and gentleness of light-sheet microscopes. We present DaXi, a single-objective light-sheet microscope design based on oblique plane illumination that achieves: (1) a wider field of view and high-resolution imaging via a custom remote focusing objective; (2) fast volumetric imaging over larger volumes without compromising image quality or necessitating tiled acquisition; (3) fuller image coverage for large samples via multi-view imaging and (4) higher throughput multi-well imaging via remote coverslip placement. Our instrument achieves a resolution of 450 nm laterally and 2 μm axially over an imaging volume of 3,000 × 800 × 300 μm. We demonstrate the speed, field of view, resolution and versatility of our instrument by imaging various systems, including Drosophila egg chamber development, zebrafish whole-brain activity and zebrafish embryonic development – up to nine embryos at a time.
Zebrafish exhibit remarkable alterations in behaviour and morphology as they develop from early larval stages to mature adults. In this study we compare the locomotion parameters of six common zebrafish strains from two different laboratories to determine the stability and repeatability of these behaviours. Our results demonstrate large variability in locomotion and fast swim events between strains and between laboratories across time. These data highlight the necessity for careful, strain-specific controls when analysing locomotor phenotypes and open up the possibility of standardising the quantification of zebrafish behaviour at multiple life stages.
Elucidating the developmental process of an organism will require the complete cartography of cellular lineages in the spatial, temporal, and molecular domains. We present Zebrahub, a comprehensive dynamic atlas of zebrafish embryonic development that combines single-cell sequencing time course data with light-sheet microscopy-based lineage reconstructions. Zebrahub is a foundational resource to study developmental processes at both transcriptional and spatiotemporal levels. It is publicly accessible as a web-based resource, providing an open-access collection of datasets and tools. Using this resource we shed new light on the pluripotency of Neuro-Mesodermal Progenitors (NMPs). We find that NMPs are pluripotent only during early axis elongation before becoming exclusively mesodermal progenitors. We attribute this restriction in NMP cell fate to emerging morphodynamic features that compartmentalize tissue motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.