Purpose of review Providing an update on the pathophysiology, cause, diagnosis and treatment of cerebellar ataxias. This is a group of sporadic or inherited disorders with heterogeneous clinical presentation and notorious impact on activities of daily life in many cases. Patients may exhibit a pure cerebellar phenotype or various combinations of cerebellar deficits and extracerebellar deficits affecting the central/peripheral nervous system. Relevant animal models have paved the way for rationale therapies of numerous disorders affecting the cerebellum. Recent findings Clinically, the cerebellar syndrome is now divided into a cerebellar motor syndrome, vestibulocerebellar syndrome and cerebellar cognitive affective syndrome with a novel clinical scale. This subdivision on three cornerstones is supported by anatomical findings and neuroimaging. It is now established that the basal ganglia and cerebellum, two major subcortical nodes, are linked by disynaptic pathways ensuring bidirectional communication. Inherited ataxias include autosomal recessive cerebellar ataxias (ARCAs), autosomal dominant spinocerebellar ataxias and episodic ataxias and X-linked ataxias. In addition to the Movement Disorders Society genetic classification of ARCAs, the classification of ARCAs by the Society for Research on the Cerebellum and Ataxias represents major progress for this complex subgroup of cerebellar ataxias. The advent of next-generation sequencing has broadened the spectrum of cerebellar ataxias. Summary Cerebellar ataxias require a multidisciplinary approach for diagnosis and management. The demonstration of anatomical relationships between the cerebellum and basal ganglia impacts on the understanding of the cerebello-basal ganglia-thalamo-cortical system. Novel therapies targeting deleterious pathways, such as therapies acting on RNA, are under development.
The terminology of cerebellar dysmetria embraces a ubiquitous symptom in motor deficits, oculomotor symptoms, and cognitive/emotional symptoms occurring in cerebellar ataxias. Patients with episodic ataxia exhibit recurrent episodes of ataxia, including motor dysmetria. Despite the consensus that cerebellar dysmetria is a cardinal symptom, there is still no agreement on its pathophysiological mechanisms to date since its first clinical description by Babinski. We argue that impairment in the predictive computation for voluntary movements explains a range of characteristics accompanied by dysmetria. Within this framework, the cerebellum acquires and maintains an internal forward model, which predicts current and future states of the body by integrating an estimate of the previous state and a given efference copy of motor commands. Two of our recent studies experimentally support the internal-forward-model hypothesis of the cerebellar circuitry. First, the cerebellar outputs (firing rates of dentate nucleus cells) contain predictive information for the future cerebellar inputs (firing rates of mossy fibers). Second, a component of movement kinematics is predictive for target motions in control subjects. In cerebellar patients, the predictive component lags behind a target motion and is compensated with a feedback component. Furthermore, a clinical analysis has examined kinematic and electromyography (EMG) features using a task of elbow flexion goal-directed movements, which mimics the finger-to-nose test. Consistent with the hypothesis of the internal forward model, the predictive activations in the triceps muscles are impaired, and the impaired predictive activations result in hypermetria (overshoot). Dysmetria stems from deficits in the predictive computation of the internal forward model in the cerebellum. Errors in this fundamental mechanism result in undershoot (hypometria) and overshoot during voluntary motor actions. The predictive computation of the forward model affords error-based motor learning, coordination of multiple degrees of freedom, and adequate timing of muscle activities. Both the timing and synergy theory fit with the internal forward model, microzones being the elemental computational unit, and the anatomical organization of converging inputs to the Purkinje neurons providing them the unique property of a perceptron in the brain. We propose that motor dysmetria observed in attacks of ataxia occurs as a result of impaired predictive computation of the internal forward model in the cerebellum.
Posterior reversible encephalopathy syndrome (PRES) is a potentially severe disorder of the autoregulation of cerebral perfusion. The major clinical manifestations are headache, seizures, altered mental status, and visual loss. The typical radiological finding is vasogenic edema predominating in the white matter of occipital and parietal lobes. PRES is increasingly recognized as a clinico-radiological entity owing to improvements and fast availability of brain imaging, especially magnetic resonance imaging (MRI). We present the exceptional case of a 67-year-old female patient with a gastric adenocarcinoma at stage IIB (T3N0M0) treated by FLOT chemotherapy (5-fluorouracil, oxaliplatin, docetaxel, and folinic acid). Two months after the unique administration of FLOT regimen, she developed sudden posterior headache and visual loss. Blood pressure values were normal. Cerebral tomography showed ischemic-like occipital bilateral lesions, and angiographic sequences revealed breakdown of the blood-brain barrier (BBB). MRI revealed bilateral parieto-occipital T1 hypointensity and T2 hyperintensity, which demonstrated vasogenic edema. The rest of the parts of the lesions were T1 hyperintensity, T2 hyperintensity, and diffusion-weighted imaging (DWI) hyperintensity, which indicate cortical laminar necrosis. After injection of gadolinium, a linear enhancement of the cortex was observed. She was treated with oral nimodipine. Follow-up was characterized by permanent visual sequelae and tetraparesis. PRES represents an urgent neurological condition. Our observation highlights that PRES should be considered in patients under chemotherapy, even when their blood pressure remains within normal range. This is the first report of PRES triggered by FLOT chemotherapy and with a silent window of 2 months between chemotherapy and PRES, widening further the spectrum of chemotherapy-induced PRES. Our case highlights the potential role of FLOT regimen in the pathogenesis of PRES and the need for a novel approach in terms of prevention of this potentially fatal complication when patients receive chemotherapy.
Various etiopathologies affect the cerebellum, resulting in the development of cerebellar ataxias (CAs), a heterogeneous group of disorders characterized clinically by movement incoordination, affective dysregulation, and cognitive dysmetria. Recent progress in clinical and basic research has opened the door of the ‘‘era of therapy” of CAs. The therapeutic rationale of cerebellar diseases takes into account the capacity of the cerebellum to compensate for pathology and restoration, which is collectively termed cerebellar reserve. In general, treatments of CAs are classified into two categories: cause-cure treatments, aimed at arresting disease progression, and neuromodulation therapies, aimed at potentiating cerebellar reserve. Both forms of therapies should be introduced as soon as possible, at a time where cerebellar reserve is still preserved. Clinical studies have established evidence-based cause-cure treatments for metabolic and immune-mediated CAs. Elaborate protocols of rehabilitation and non-invasive cerebellar stimulation facilitate cerebellar reserve, leading to recovery in the case of controllable pathologies (metabolic and immune-mediated CAs) and delay of disease progression in the case of uncontrollable pathologies (degenerative CAs). Furthermore, recent advances in molecular biology have encouraged the development of new forms of therapies: the molecular targeting therapy, which manipulates impaired RNA or proteins, and the neurotransplantation therapy, which delays cell degeneration and facilitates compensatory functions. The present review focuses on the therapeutic rationales of these recently developed therapeutic modalities, highlighting the underlying pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.