We investigate the use of laccase enzymes to couple short nonpolar chains containing aromatic groups onto flax fibers and nanofibrillated cellulose (NFC) with different lignin contents. Trametes villosa , Pycnoporus cinnabarinus , and Myceliophthora thermophila were used to facilitate surface coupling and to produce materials with different levels of hydrophobicity. Heat treatment of fiber webs after lacccase-mediated coupling markedly increased the resistance to water absorption. The highest hydrophobization levels of flax fibers was achieved by coupling dodecyl 3,4,5-trihydroxybenzoate (HB-C12), which yielded water contact angles (WCAs) of 80-96 degrees and water absorption times (drop tests) of ca. 73 min. The results from apparent aromatic content and FTIR analyses confirmed the laccase-mediated coupling of HB-C12 onto the cellulose fibers. Ultrathin films of NFC were also used as substrates for enzyme-mediated hydrophobization with HB-C12. In these cases, WCAs in the range of 87-104 degrees were achieved, depending on the conditions. Quartz crystal microgravimetry (QCM) was used to study the dynamics and the extent of the coupling process onto cellulose. The results help to better understand the mechanisms involved in laccase-mediated hydrophobization and provide a proof of a biotechnological platform for the development of value-added fiber products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.