Context. The existence of ultra-massive white dwarf stars, MWD ≳ 1.05 M⊙, has been reported in several studies. These white dwarfs are relevant for the role they play in type Ia supernova explosions, the occurrence of physical processes in the asymptotic giant-branch phase, the existence of high-field magnetic white dwarfs, and the occurrence of double-white-dwarf mergers. Aims. We aim to explore the formation of ultra-massive, carbon-oxygen core white dwarfs resulting from single stellar evolution. We also intend to study their evolutionary and pulsational properties and compare them with those of the ultra-massive white dwarfs with oxygen-neon cores resulting from carbon burning in single progenitor stars, and with binary merger predictions. The aim is to provide a theoretical basis that can eventually help to discern the core composition of ultra-massive white dwarfs and the circumstances of their formation. Methods. We considered two single-star evolution scenarios for the formation of ultra-massive carbon-oxygen core white dwarfs, which involve the rotation of the degenerate core after core helium burning and reduced mass-loss rates in massive asymptotic giant-branch stars. We find that reducing standard mass-loss rates by a factor larger than 5−20 yields the formation of carbon-oxygen cores more massive than 1.05 M⊙ as a result of the slow growth of carbon-oxygen core mass during the thermal pulses. We also performed a series of evolutionary tests of solar-metallicity models with initial masses between 4 and 9.5 M⊙ and with different core rotation rates. We find that ultra-massive carbon-oxygen core white dwarfs are formed even for the lowest rotation rates we analyzed, and that the range of initial masses leading to these white dwarfs widens as the rotation rate of the core increases, whereas the initial mass range for the formation of oxygen-neon core white dwarfs decreases significantly. Finally, we compared our findings with the predictions from ultra-massive white dwarfs resulting from the merger of two equal-mass carbon-oxygen core white dwarfs, by assuming complete mixing between them and a carbon-oxygen core for the merged remnant. Results. These two single-evolution scenarios produce ultra-massive white dwarfs with different carbon-oxygen profiles and different helium contents, thus leading to distinctive signatures in the period spectrum and mode-trapping properties of pulsating hydrogen-rich white dwarfs. The resulting ultra-massive carbon-oxygen core white dwarfs evolve markedly slower than their oxygen-neon counterparts. Conclusions. Our study strongly suggests the formation of ultra-massive white dwarfs with carbon-oxygen cores from a single stellar evolution. We find that both the evolutionary and pulsation properties of these white dwarfs are markedly different from those of their oxygen-neon core counterparts and from those white dwarfs with carbon-oxygen cores that might result from double-degenerate mergers. This can eventually be used to discern the core composition of ultra-massive white dwarfs and their formation scenario.
The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55m JST at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg 2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg 2 field-of-view and plate scale of 0.23 arcsec pixel −1 . To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∼1 deg 2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (NB, FWHM ∼ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band (BB) filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of mag AB 22 − 23.5 in the 54 narrow band filters and up to 24 in the broader filters (5σ in a 3 aperture). The miniJPAS primary catalog contains more than 64, 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of ≤ 0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z ∼ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z > 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude. For reference, the miniJPAS data and associated value added catalogs are publicly available http://archive.cefca.es/catalogues/minijpas-pdr201912.
Recently, it has been found that off-center carbon burning in a subset of intermediate-mass stars does not propagate all the way to the center, resulting in a class of hybrid CONe cores. The implications of a significant presence of carbon in the resulting massive degenerate cores have not been thoroughly explored so far. Here, we consider the possibility that stars hosting these hybrid CONe cores might belong to a close binary system and, eventually, become white dwarfs accreting from a nondegenerate companion at rates leading to a supernova explosion. We computed the hydrodynamical phase of the explosion of Chandrasekhar-mass white dwarfs harboring hybrid cores, assuming that the explosion starts at the center; this explosion occurs either as a detonation, as may be expected in some degenerate merging scenarios, or as a deflagration that afterward transitions into a delayed detonation. We assume these hybrid cores are made of a central CO volume, of mass M CO , surrounded by an ONe shell. We show that, in the case of a pure detonation, a medium-sized carbon-rich region, M CO (<0.4 M ), results in the ejection of a small fraction of the mantle while leaving a massive bound remnant. Part of this remnant is made of the products of the detonation, that is, Fe-group nuclei, but they are buried in its inner regions unless convection is activated during the ensuing cooling and shrinking phase of the remnant. In contrast, and somehow paradoxically, delayed detonations do not leave remnants other than for the minimum M CO we explored of M CO = 0.2 M , and even in this case the remnant is as small as 0.13 M . The ejecta produced by these delayed detonations are characterized by slightly smaller masses of 56 Ni and substantially smaller kinetic energies than the ejecta obtained for a delayed detonation of a "normal" CO white dwarf. The optical emission expected from these explosions most likely do not match the observational properties of typical Type Ia supernovae, although they make interesting candidates for the subluminous class of SN2002cx-like or SNIax.
Getting a better understanding of the evolution and nucleosynthetic yields of the most metal-poor stars (Z 10 −5 ) is critical because they are part of the big picture of the history of the primitive Universe. Yet many of the remaining unknowns of stellar evolution lie in the birth, life, and death of these objects. We review stellar evolution of intermediatemass Z ≤ 10 −5 models existing in the literature, with a particular focus on the problem of their final fates. We emphasize the importance of the mixing episodes between the stellar envelope and the nuclearly processed core, which occur after stars exhaust their central He (second dredge-up and dredge-out episodes). The depth and efficiency of these episodes are critical to determine the mass limits for the formation of electron-capture supernovae (EC-SNe). Our knowledge of these phenomena is not complete because they are strongly affected by the choice of input physics. These uncertainties affect stars in all mass and metallicity ranges. However, difficulties in calibration pose additional challenges in the case of the most metal-poor stars. We also consider the alternative SN I1/2 channel to form supernovae out of the most metal-poor intermediate mass objects. In this case, it is critical to understand the thermally-pulsing AGB evolution until the late stages. Efficient second dredge-up and, later, third dredge-up episodes could be able to pollute stellar envelopes enough for the stars to undergo thermal pulses in a way very similar to that of higher initial Z objects. Inefficient second and/or third dredge-up may leave an almost pristine envelope, unable to sustain strong stellar winds. This may allow the Hexhausted core to grow to the Chandrasekhar mass before the envelope is completely lost, and thus let the star explode as a SN I1/2. After reviewing the information available on these two possible channels for the formation of supernovae, we discuss existing nucleosynthetic yields of stars of metallicity Z ≤ 10 −5 , and present an example of nucleosynthetic calculations for a thermally-pulsing Super-AGB star of Z = 10 −5 . We compare theoretical predictions with observations of the lowest [Fe/H] objects detected. The review closes by discussing current open questions as well as possible fruitful avenues for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.