Due to its excellent electronic and photonic properties, silicon is a good candidate for mid-infrared optoelectronic devices and systems that can be used in a host of applications. In this paper we review some of the results reported recently, and we also present several new results on midinfrared photonic devices including Mach-Zehnder interferometers, multimode interference splitters and multiplexers based on silicon-oninsulator, polysilicon, suspended silicon, and slot waveguide platforms.
We present several fundamental photonic building blocks based on suspended silicon waveguides supported by a lateral cladding comprising subwavelength grating metamaterial. We discuss the design, fabrication, and characterization of waveguide bends, multimode interference devices and Mach-Zehnder interferometers for the 3715 - 3800 nm wavelength range, demonstrated for the first time in this platform. The waveguide propagation loss of 0.82 dB/cm is reported, some of the lowest loss yet achieved in silicon waveguides for this wavelength range. These results establish a direct path to ultimately extending the operational wavelength range of silicon wire waveguides to the entire transparency window of silicon.
We report transmission measurements of germanium on silicon waveguides in the 7.5-8.5 μm wavelength range, with a minimum propagation loss of 2.5 dB/cm at 7.575 μm. However, we find an unexpected strongly increasing loss at higher wavelengths, potential causes of which we discuss in detail. We also demonstrate the first germanium on silicon multimode interferometers operating in this range, as well as grating couplers optimized for measurement using a long wavelength infrared camera. Finally, we use an implementation of the "cut-back" method for loss measurements that allows simultaneous transmission measurement through multiple waveguides of different lengths, and we use dicing in the ductile regime for fast and reproducible high quality optical waveguide end-facet preparation.
We present a new type of mid-infrared silicon-on-insulator (SOI) waveguide. The waveguide comprises a subwavelength lattice of holes acting as lateral cladding while at the same time allowing for the bottom oxide (BOX) removal by etching. The waveguide loss is determined at the wavelength of 3.8 µm for structures before and after being underetched using both vapour phase and liquid hydrofluoric acid (HF). A propagation loss of 3.4 dB/cm was measured for a design with a 300nm grating period and 150nm holes after partial removal (560nm) of BOX by vapour phase HF etching. We also demonstrate an alternative design with 550nm period and 450nm holes, which allows a faster and complete removal of the BOX by liquid phase HF etching, yielding the waveguide propagation loss of 3.6 dB/cm.
In this Letter, we report suspended silicon waveguides operating at a wavelength of 7.67 μm with a propagation loss of 3.1±0.3 dB/cm. To our knowledge, this is the first demonstration of low-loss silicon waveguides at such a long wavelength, with loss comparable to other platforms that use more exotic materials. The suspended Si waveguide core is supported by a sub-wavelength grating that provides lateral optical confinement while also allowing access to the buried oxide layer so that it can be wet etched using hydrofluoric acid. We also demonstrate low-loss waveguide bends and s-bends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.