Abstract. Two histone H4 cDNA clones were isolated from a tomato (Lycopersicon esculentum Mill.) shoot-tip cDNA library using a heterologous probe from barley (Hordeum vulgate L.). Both cDNAs, which are 81% identical in the coding region, are polyadenylated and belong to a small gene family in the tomato genome. Histone H4 message is abundant in young tissues and rare in older tissues. In the shoot apical meristem, the distribution of H4-expressing cells changes during development. In a juvenile vegetative apex, H4 message is detectable in the central region and the peripheral parts of the meristem. In a mature vegetative apical meristem, H4-expressing cells are localized in the peripheral zone extending into the provascular strands and the rib meristem whereas the central zone is almost devoid of H4 mRNA. After floral transition, H4 mRNA is found throughout the floral meristem, indicating a second change in the pattern of H4 expression. The observed changes in H4 expression are indicative of changes in the distribution of mitotic activity in the shoot apical meristem during plant development. In addition, H4-expressing cells were found to occur frequently in clusters, which may indicate a partial synchronization of cell divisions in the shoot apex.
SummaryTomato (Lycopersicon esculentum Mill., recently redesignated Solanum lycopersicum L.), an agronomically important crop plant, has been adopted as a model species complementary to Arabidopsis in which to characterize the phytochrome family. Here we describe the cloning and molecular characterization of the gene encoding the apoprotein of phytochrome A in wild-type tomato and in the far-red-light-insensitive (fri 1 and fri 2 ) tomato mutants. The physical organization of this gene is similar to that of other angiosperm phytochromes with the four exons of the coding region interrupted by three introns. The pool of transcripts is heterogeneous due to multiple transcription start sites and to three modes of alternative splicing of the 5Ј leader. The leader in each alternative transcript carries multiple upstream open reading frames of considerable length. At the genomic level, both fri mutants share an identical base substitution which changes a consensus AG/ to TG/ at the 3Ј end of the intron between exons 1 and 2. This mutation leads to aberrant processing of the resultant pre-mRNA. While most mature transcripts retain the mutated intron, both cryptic splicing and exon skipping were also detected. Cryptic splicing occurred both upstream and downstream from the wild-type splice site. These observations are consistent with the hypothesis that exon definition in splicing of plant pre-mRNAs plays a secondary role to that of intron definition. Analysis of
The structure of the gene encoding the apoprotein of phytochrome B (PHYB1) in tomato has been determined from genomic and cDNA sequences. In contrast to PHYA, PHYB1 lacks an intron upstream of the first ATG. A single transcription start site was found by 5' RACE at -116. Tomato PHYB1 spans 7 kb starting from the first ATG. The coding region is organized into four exons as for other angiosperm PHY. The deduced apoprotein consists of 1131 amino acids, with a molecular mass of 125.4 kDa. Tomato phytochrome B1 shares 78% and 74% identity with Arabidopsis phytochromes B and D, respectively. Along with the normally spliced full-length transcripts, sequences of reverse transcriptase-PCR clones revealed five types of alternative transcripts. Each type of alternative transcript was missing a considerable part of the coding region, including the chromophore-binding site. The four putative PHYB1 mutants in tomato, which are temporarily red-light insensitive (tri), were each confirmed to have a mutation in PHYB1. Each mutation arose from a different, single-base substitution. Allele tri1 is presumably a null because the mutation introduces a stop at codon 92. In tri3, val-238 is replaced by Phe. The importance of this valine residue is evidenced by the fact that the tri3 phenotype is as strong as that of tri1. Alleles tri2 and tri4 encode proteins truncated at their C-termini. The former lacks either 170 or 438 amino acids, depending upon which of two types of splicing occurs during transcript maturation, while the latter lacks 225.
Two genes that are highly expressed in the tomato shoot apex have been cloned by differential hybridization. One of the deduced polypeptides (AT1) shows significant similarities to class II proteinase inhibitors, while the other (AT2) displays similarities to defensins. Transcripts of both genes are also detectable in the developing flower and are present only in minor amounts in other tissues tested. In situ hybridization analysis revealed that both genes are expressed in non-overlapping subsets of cells in the shoot apex, as well as in the developing flower. The potential use of these genes as markers for certain cell types and the possible biological function of the encoded proteins are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.