Background: The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl 2 -rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urania. By contrast, the microbiota of these brine-lake sediments remains largely unexplored.
Endospores are heat-resistant bacterial resting stages that can remain viable for long periods of time and may thus accumulate in sediments as a function of sediment age. The number of spores in sediments has only rarely been quantified, because of methodological problems, and consequently little is known about the quantitative contribution of endospores to the total number of prokaryotic cells. We here report on a protocol to determine the number of endospores in sediments and cultures. The method is based on the fluorimetric determination of dipicolinic acid (DPA), a spore core-specific compound, after reaction with terbium chloride. The concentration of DPA in natural samples is converted into endospore numbers using endospore-forming pure cultures as standards. Quenching of the fluorescence by sediment constituents and background fluorescence due to humic substances hampered direct determination of DPA in sediments. To overcome those interferences, DPA was extracted using ethyl acetate prior to fluorimetric measurements of DPA concentrations. The first results indicated that endospore numbers obtained with this method are orders of magnitude higher than numbers obtained by cultivation after pasteurization. In one of the explored sediment cores, endospores accounted for 3% of all stainable prokaryotic cells.
Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment–basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.