ne of the most important medical discoveries of the past two decades has been that the immune system and inflammatory processes are involved in not just a few select disorders, but a wide variety of mental and physical health problems that dominate present-day morbidity and mortality worldwide 1-4. Indeed, chronic inflammatory diseases have been recognized as the most significant cause of death in the world today, with more than 50% of all deaths being attributable to inflammation-related diseases such as ischemic heart disease, stroke, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease (NAFLD) and autoimmune and neurodegenerative conditions 5. Evidence is emerging that the risk of developing chronic inflammation can be traced back to early development, and its effects are now known to persist throughout the life span to affect adulthood health and risk of mortality 6-8. In this Perspective, we describe these effects and outline some promising avenues for future research and intervention. Inflammation Inflammation is an evolutionarily conserved process characterized by the activation of immune and non-immune cells that protect the host from bacteria, viruses, toxins and infections by eliminating pathogens and promoting tissue repair and recovery 2,9. Depending on the degree and extent of the inflammatory response, including whether it is systemic or local, metabolic and neuroendocrine changes can occur to conserve metabolic energy and allocate more nutrients to the activated immune system 9-12. Specific biobehavioral effects of inflammation thus include a constellation of energysaving behaviors commonly known as "sickness behaviors, " such as
Hypertension promotes atherosclerosis and is a major source of morbidity and mortality. We show that mice lacking T and B cells (RAG-1−/− mice) have blunted hypertension and do not develop abnormalities of vascular function during angiotensin II infusion or desoxycorticosterone acetate (DOCA)–salt. Adoptive transfer of T, but not B, cells restored these abnormalities. Angiotensin II is known to stimulate reactive oxygen species production via the nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase in several cells, including some immune cells. Accordingly, adoptive transfer of T cells lacking the angiotensin type I receptor or a functional NADPH oxidase resulted in blunted angiotensin II–dependent hypertension and decreased aortic superoxide production. Angiotensin II increased T cell markers of activation and tissue homing in wild-type, but not NADPH oxidase–deficient, mice. Angiotensin II markedly increased T cells in the perivascular adipose tissue (periadventitial fat) and, to a lesser extent the adventitia. These cells expressed high levels of CC chemokine receptor 5 and were commonly double negative (CD3+CD4−CD8−). This infiltration was associated with an increase in intercellular adhesion molecule-1 and RANTES in the aorta. Hypertension also increased T lymphocyte production of tumor necrosis factor (TNF) α, and treatment with the TNFα antagonist etanercept prevented the hypertension and increase in vascular superoxide caused by angiotensin II. These studies identify a previously undefined role for T cells in the genesis of hypertension and support a role of inflammation in the basis of this prevalent disease. T cells might represent a novel therapeutic target for the treatment of high blood pressure.
T-cell receptor (TCR) diversity, a prerequisite for immune system recognition of the universe of foreign antigens, is generated in the first two decades of life in the thymus and then persists to an unknown extent through life via homeostatic proliferation of naïve T cells. We have used next-generation sequencing and nonparametric statistical analysis to estimate a lower bound for the total number of different TCR beta (TCRB) sequences in human repertoires. We arrived at surprisingly high minimal estimates of 100 million unique TCRB sequences in naïve CD4 and CD8 T-cell repertoires of young adults. Naïve repertoire richness modestly declined two-to fivefold in healthy elderly. Repertoire richness contraction with age was even less pronounced for memory CD4 and CD8 T cells. In contrast, age had a major impact on the inequality of clonal sizes, as estimated by a modified Gini-Simpson index clonality score. In particular, large naïve T-cell clones that were distinct from memory clones were found in the repertoires of elderly individuals, indicating uneven homeostatic proliferation without development of a memory cell phenotype. Our results suggest that a highly diverse repertoire is maintained despite thymic involution; however, peripheral fitness selection of T cells leads to repertoire perturbations that can influence the immune response in the elderly.adaptive immune responses | aging | immunosenescence | T-cell homeostasis T he ability of the adaptive immune system to respond to a wide variety of pathogens depends on a large repertoire of unique T-cell receptors (TCRs). TCR diversity is generated by the random and imprecise rearrangements of the V and J segments of the TCR alpha (TCRA) and V, D, and J segments of the TCR beta (TCRB) genes in the thymus. Thymic production of T cells is the sole mechanism to generate TCR diversity. With
SummaryThe accumulation of CD28 − T cells, particularly within the CD8 subset, is one of the most prominent changes during T cell homeostasis and function associated with aging in human. CD28, a major costimulatory receptor, is responsible for the optimal antigen-mediated T cell activation, proliferation, and survival of T cells. CD28 − T cells exhibit reduced antigen receptor diversity, defective antigeninduced proliferation, and a shorter replicative lifespan while showing enhanced cytotoxicity and regulatory functions. Gene expression analyses reveal profound changes of CD28 − T cells in comparison to their CD28 + counterparts and support their functional differences. Here we review the recent advance of our understanding of CD28− T cells and their role in age-associated decline of immune function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.