The sudden global emergence of SARS-CoV-2 urgently requires an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several omics studies have extended our knowledge of COVID-19 pathophysiology, including some focused on proteomic aspects 1-3 . To understand how SARS-CoV-2 and related coronaviruses manipulate the host we here characterized interactome, proteome and signaling processes in a systems-wide manner. This identified connections between the corresponding cellular events, revealed functional effects of the individual viral proteins and put these findings into the context of host signaling pathways. We investigated the closely related SARS-CoV-2 and SARS-CoV viruses as well as the influence of SARS-CoV-2 on transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed relationships between the perturbations taking place upon SARS-CoV-2 infection at different layers and identified unique and common molecular mechanisms of SARS coronaviruses. The results highlight the functionality of individual proteins as well as vulnerability hotspots of SARS-CoV-2, which we targeted with clinically approved drugs. We exemplify this by identification of kinase inhibitors as well as MMPase inhibitors with significant antiviral effects against SARS-CoV-2. Main text:To identify interactions of SARS-CoV-2 and SARS-CoV with cellular proteins, we transduced A549 lung carcinoma cells with lentiviruses expressing individual HA-tagged viral proteins (Figure 1a;Extended data Fig. 1a; Supplementary Table 1). Affinity purification followed by mass spectrometry analysis (AP-MS) and statistical modelling of the MS1-level quantitative data allowed identification of 1484 interactions between 1086 cellular proteins and 24 SARS-CoV-2 and 27 SARS-CoV bait proteins (Figure 1b; Extended data Fig. 1b; Supplementary Table 2). The resulting virus-host interaction network revealed a wide range of cellular activities intercepted by SARS-CoV-2 and SARS-CoV (Figure 1b; Extended data Table 1; Supplementary Table 2). In particular, we discovered Extended data Figure 1 | Expression of viral proteins in transduced A549 cells induces changes to the host proteome. (a) Expression of HA-tagged viral proteins, in stably transduced A549 cells, used in AP-MS and proteome expression measurements. (b) The extended version of the virus-host protein-protein interaction network with 24 SARS-CoV-2 and 27 SARS-CoV proteins, as well as ORF3 of HCoV-NL63 and ORF4 and 4a of HCoV-229E, used as baits. Host targets regulated upon viral protein overexpression or SARS-CoV-2 infection (based on the analysis of all data of this study) are highlighted (see the in-plot legend). (c-f) Co-precipitation experiments in HEK 293T cells showing a specific enrichment of (c) endogenous MAVS co-precipitated with c-term HA-tagged ORF7b of SARS-CoV-2 and SARS-CoV (negative controls: SARS-CoV-2 ORF6-HA, ORF7a-HA), (d) ORF7b-H...
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
The aim of this study was to determine the prevalence of the three Treponema species as well as D. nodosus in Digital dermatitis (DD) and slurry of Swiss cattle using PCR. A total of 86 specimens from 24 farms were enrolled in the study. Slurry samples from 21 DD-affected and one unaffected farm were collected to assess the potential of environmental transmission. Nested and real-time PCR were performed from the specimens to detect Treponema species and D. nodosus, respectively. The DD-stages were positive for at least one or more of the DD-associated Treponema species in 50 of 61 cases (82.0%) and in 9 of 25 cases (36.0%) in unaffected animals. Infected animals with small focal active lesions showed a significantly lower prevalence (14.8%) compared to the other DD stages (67.2%; P = 0.011). Most prevalent was T. phagedenis (65.1%). D. nodosus was detected in 51.8% of clinical DD lesions and 24.1% in unaffected cases, but its presence was not significantly associated with the various DD-stages. All samples positive for D. nodosus contained the acid protease gene aprB2 but were negative for aprV2, the latter associated with virulence in sheep foot rot. Control farms were negative for all DD-associated Treponema species while positive for aprB2 and negative for aprV2. The presence of aprB2 suggests it is ubiquitous in the animal environment. With respect to the slurry samples, three out of 21 specimens (14.3%) were positive for one or more of the DD-associated Treponema species and eleven out of 21 specimens (52.4%) were positive for aprB2 and negative for aprV2 of D. nodosus. In conclusion, an association was found between the presence of clinical DD and specific Treponema species, while for D. nodosus no such link with DD lesions could be observed.
Members of the “ Mycoplasma mycoides cluster” are important animal pathogens causing diseases including contagious bovine pleuropneumonia and contagious caprine pleuropneumonia, which are of utmost importance in Africa or Asia. Even if all existing vaccines have shortcomings, vaccination of herds is still considered the best way to fight mycoplasma diseases, especially with the recent and dramatic increase of antimicrobial resistance observed in many mycoplasma species. A new generation of vaccines will benefit from a better understanding of the pathogenesis of mycoplasmas, which is very patchy up to now. In particular, surface-exposed virulence traits are likely to induce a protective immune response when formulated in a vaccine. The candidate virulence factor L-α-glycerophosphate oxidase (GlpO), shared by many mycoplasmas including Mycoplasma pneumoniae , was suggested to be a surface-exposed enzyme in Mycoplasma mycoides subsp. mycoides responsible for the production of hydrogen peroxide directly into the host cells. We produced a glpO isogenic mutant GM12::YCpMmyc1.1- ΔglpO using in-yeast synthetic genomics tools including the tandem-repeat endonuclease cleavage (TREC) technique followed by the back-transplantation of the engineered genome into a mycoplasma recipient cell. GlpO localization in the mutant and its parental strain was assessed using scanning electron microscopy (SEM). We obtained conflicting results and this led us to re-evaluate the localization of GlpO using a combination of in silico and in vitro techniques, such as Triton X-114 fractionation or tryptic shaving followed by immunoblotting. Our in vitro results unambiguously support the finding that GlpO is a cytoplasmic protein throughout the “ Mycoplasma mycoides cluster.” Thus, the use of GlpO as a candidate vaccine antigen is unlikely to induce a protective immune response.
Shiga toxin-producing Escherichia coli (STEC) cause gastrointestinal illnesses including non-bloody or bloody diarrhoea, haemorrhagic colitis (HC), and the haemolytic uremic syndrome (HUS). To investigate the occurrence of STEC among grazing dromedaries from Kenya, E. coli isolated from fecal matter collected from 163 dromedaries on a large ranch were screened for the presence of stx1 and stx2. STEC strains were isolated and serotyped. Isolates were subjected to PCR for the subtyping of stx genes and for the detection of eae and ehx. In addition, whole genome sequencing (WGS) was carried out to detect further virulence genes and to determine the multilocus sequence types (MLST). Antimicrobial resistance profiles were determined by disk diffusion.STEC was isolated from 20 (12.3%) of the fecal samples. Thereof, nine (45%) isolates were STEC O156:H25, three (15%) isolates typed STEC O43:H2. The remaining isolates occurred as single serotypes or were O non-typeable. Eleven (55%) of the isolates harboured stx2a, nine (45%) eae, and 14 (70%) ehx, respectively. WGS revealed the presence of iss in 16 (80%), subAB in four (20%) and astA in two (10%) of the isolates, Furthermore, espA, tccP, nleA, nleB, tccP, and tir were found exclusively among STEC O156:H25.Eleven different sequence types (ST) were detected. The most prominent was ST300/ST5343, which comprised STEC O156:H25. All STEC isolates were pan susceptible to a panel of 16 antimicrobial agents. Overall, the results indicate that dromedary camels in Kenya may be reservoirs of STEC, including serotypes possessing virulence markers associated to disease in humans, such as STEC O156:H25. STEC in camels may represent a health hazard for humans with close contact to camels or to consumers of camel derived foodstuffs, such as unpasteurised camel milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.