Poly(amidoamine) (PAMAM) dendrimers of generations G0, G1, G2, G3, G4, and G6 are
investigated by potentiometric (acid−base) titrations. The data are interpreted with a site binding model,
which offers the possibility to model the titration curves for all generations of the dendrimers and to
describe all dendrimers within a common parameter set. These parameters involve the microscopic
ionization constants for each group in the fully deprotonated state and nearest-neighbor pair interaction
parameters. From this model we can further obtain all microscopic ionization constants as well as
conditional microstate probabilities. The protonation of PAMAM dendrimers first involves protonation
of primary amine groups at the outer rim of the dendrimer at high pH, while the tertiary amine groups
in the dendrimer core protonate at lower pH. The last group to protonate at low pH is a central tertiary
amine.
The adsorption of poly(vinylamine) (PVA) on poly(styrene sulfate) latex particles is studied, and its consequences on the charging behavior and suspension stability are investigated. The adsorption process is assessed by batch depletion experiments and time-resolved electrophoretic mobility measurements. The adsorption of PVA appears to be basically irreversible. The rate of adsorption decreases with decreasing polymer dose. At low polymer dose, the polymer coverage corresponds to the amount of the polyelectrolyte added, while at high polymer dose, the polymer coverage saturates the surface. Stability ratios are determined by dynamic light scattering, and strongly depend on the polymer dose and salt level. The aggregation is rapid near the isoelectric point (IEP), and it slows down when moving away from it. The charge neutralization is highly nonstoichiometric with charging ratios (CR) larger than unity, meaning that several charges on an adsorbed polyelectrolyte chain are necessary to neutralize a single charge on the particle surface. By comparing the IEP for particles and polyelectrolytes of different charge densities, we find a strong dependence of the CR on the mismatch between the average distances between individual charges on the surface and on the polyelectrolyte. A simple model is proposed to explain this trend.
An adsorbed layer of a cationic polyelectrolyte, poly(diallyldimethyl-ammonium) chloride (PDADMAC) on negatively charged colloidal latex particles was investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). SANS gives a layer thickness of 8 +/- 1 A and a polymer volume fraction of 0.31 +/- 0.05 within the film. DLS gives a somewhat larger thickness of 18 +/- 2 A, and the discrepancy is likely due to the inhomogeneous nature of the layer and the existence of polymer tails or loops protruding into solution. These results show that a highly charged polyelectrolyte adsorbs on an oppositely charged colloidal particle in a flat configuration due to the attractive forces acting between the polyelectrolyte and the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.