Abstract. Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for solving this type of systems. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.
We consider deflation and augmentation techniques for accelerating the convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in the sense the term is used here) "removes" certain parts from the operator making it singular, while augmentation adds a subspace to the Krylov subspace (often the one that is generated by the singular operator); in contrast, preconditioning changes the spectrum of the operator without making it singular. Deflation and augmentation have been used in a variety of methods and settings. Typically, deflation is combined with augmentation to compensate for the singularity of the operator, but both techniques can be applied separately.We introduce a framework of Krylov subspace methods that satisfy a Galerkin condition. It includes the families of orthogonal residual (OR) and minimal residual (MR) methods. We show that in this framework augmentation can be achieved either explicitly or, equivalently, implicitly by projecting the residuals appropriately and correcting the approximate solutions in a final step. We study conditions for a breakdown of the deflated methods, and we show several possibilities to avoid such breakdowns for the deflated MinRes method. Numerical experiments illustrate properties of different variants of deflated MinRes analyzed in this paper.
No abstract
Abstract. We study block-diagonal preconditioners and an efficient variant of constraint preconditioners for general two-by-two block linear systems with zero (2,2)-block. We derive block-diagonal preconditioners from a splitting of the (1,1)-block of the matrix. From the resulting preconditioned system we derive a smaller, so-called related system that yields the solution of the original problem. Solving the related system corresponds to an efficient implementation of constraint preconditioning. We analyze the properties of both classes of preconditioned matrices, in particular their spectra. Using analytical results, we show that the related system matrix has the more favorable spectrum, which in many applications translates into faster convergence for Krylov subspace methods. We show that fast convergence depends mainly on the quality of the splitting, a topic for which a substantial body of theory exists. Our analysis also provides a number of new relations between block-diagonal preconditioners and constraint preconditioners. For constrained problems, solving the related system produces iterates that satisfy the constraints exactly, just as for systems with a constraint preconditioner. Finally, for the Lagrange multiplier formulation of a constrained optimization problem we show how scaling nonlinear constraints can dramatically improve the convergence for linear systems in a Newton iteration. Our theoretical results are confirmed by numerical experiments on a constrained optimization problem.We consider the general, nonsymmetric, nonsingular case. Our only additional requirement is the nonsingularity of the Schur-complement-type matrix derived from the splitting that defines the preconditioners. In particular, the (1,2)-block need not equal the transposed (2,1)-block, and the (1,1)-block might be indefinite or even singular. This is the first paper in a two-part sequence. In the second paper we will study the use of our preconditioners in a variety of applications.
We present a numerical method for computing the logarithmic capacity of compact subsets of C, which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.