Delay-tolerant Networking (DTN) enables communication in sparse mobile ad-hoc networks and other challenged environments where traditional networking fails and new routing and application protocols are required. Past experience with DTN routing and application protocols has shown that their performance is highly dependent on the underlying mobility and node characteristics. Evaluating DTN protocols across many scenarios requires suitable simulation tools. This paper presents the Opportunistic Networking Environment (ONE) simulator specifically designed for evaluating DTN routing and application protocols. It allows users to create scenarios based upon different synthetic movement models and real-world traces and offers a framework for implementing routing and application protocols (already including six well-known routing protocols). Interactive visualization and post-processing tools support evaluating experiments and an emulation mode allows the ONE simulator to become part of a real-world DTN testbed. We show sample simulations to demonstrate the simulator's flexible support for DTN protocol evaluation.
movement models, such as Random Waypoint, do not capture reliably the properties of movement in the real life scenarios. We present and analyse a movement model for delay-tolerant network simulations that is able to produce inter-contact time and contact time distributions that follow closely the ones found in the traces from the real-world measurement experiments. We validate the movement model using the ONE simulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.