We investigate numerically the spectrum of plasmon resonances for metallic nanowires with a nonregular cross section, in the 20-50 nm range. We first consider the resonance spectra corresponding to nanowires whose cross sections form different simplexes. The number of resonances strongly increases when the section symmetry decreases: A cylindrical wire exhibits one resonance, whereas we observe more than five distinct resonances for a triangular particle. The spectral range covered by these different resonances becomes very large, giving to the particle-specific distinct colors. At the resonance, dramatic field enhancement is observed at the vicinity of nonregular particles, where the field amplitude can reach several hundred times that of the illumination field. This near-field enhancement corresponds to surface-enhanced Raman scattering ͑SERS͒ enhancement locally in excess of 10 12 . The distance dependence of this enhancement is investigated and we show that it depends on the plasmon resonance excited in the particle, i.e., on the illumination wavelength. The average Raman enhancement for molecules distributed on the entire particle surface is also computed and discussed in the context of experiments in which large numbers of molecules are used.
We investigate numerically the plasmon resonances of 10±50 nm nanowires with a non-elliptical section. Such wires have a much more complex behavior than elliptical wires and their resonances span a larger frequency range. The ®eld distribution at the surface of these wires exhibits a dramatic enhancement, up to several hundred times the incident ®eld amplitude. These strongly localized ®elds can provide an important mechanism for surface enhanced Raman scattering (SERS). Ó
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.