Disruption of the precise balance of positive and negative molecular regulators of blood and lymphatic vessels can lead to myriad diseases that affect one in four people worldwide. Although dozens of natural inhibitors of hemangiogenesis have been identified, an endogenous selective inhibitor of lymphatic vessels has not yet been described. We report the existence of a secreted, splice variant of vascular endothelial growth factor receptor-2 (sVegfr-2) that inhibits developmental and reparative lymphangiogenesis by blocking Vegf-c. Tissue-specific loss of sVegfr-2 in mice induced, at birth, spontaneous lymphatic invasion of the normally alymphatic cornea and hyperplasia of skin lymphatics without accompanying changes in blood vasculature. sVegfr-2 inhibited lymphangiogenesis but not hemangiogenesis induced by corneal suture injury or transplantation, enhanced corneal allograft survival, and suppressed lymphangioma cellular proliferation. Naturally occurring sVegfr-2 is a molecular uncoupler of blood and lymphatic vessels whose modulation might have a therapeutic role in lymphatic vascular malformations, transplantation, and potentially in tumor lymphangiogenesis and lymphedema.
The lymphangiogenic potency of endothelial growth factors has not been studied to date. This is partially due to the lack of in vivo lymphangiogenesis assays. We have studied the lymphatics of differentiated avian chorioallantoic membrane (CAM) using microinjection of Mercox resin, semi- and ultrathin sectioning, immunohistochemical detection of fibronectin and alpha-smooth muscle actin, and in situ hybridization with VEGFR-2 and VEGFR-3 probes. CAM is drained by lymphatic vessels which are arranged in a regular pattern. Arterioles and arteries are accompanied by a pair of interconnected lymphatics and form a plexus around bigger arteries. Veins are also associated with lymphatics, particularly larger veins, which are surrounded by a lymphatic plexus. The lymphatics are characterized by an extremely thin endothelial lining, pores, and the absence of a basal lamina. Patches of the extracellular matrix can be stained with an antibody against fibronectin. Lymphatic endothelial cells of differentiated CAM show ultrastructural features of this cell type. CAM lymphatics do not possess mediae. In contrast, the lymphatic trunks of the umbilical stalk are invested by a single but discontinuous layer of smooth muscle cells. CAM lymphatics express VEGFR-2 and VEGFR-3. Both the regular pattern and the typical structure of these lymphatics suggest that CAM is a suitable site to study the in vivo effects of potential lymphangiogenic factors. We have studied the effects of VEGF homo- and heterodimers, VEGF/PlGF heterodimers, and PlGF and VEGF-C homodimers on Day 13 CAM. All the growth factors containing at least one VEGF chain are angiogenic but do not induce lymphangiogenesis. PlGF-1 and PlGF-2 are neither angiogenic nor lymphangiogenic. VEGF-C is the first lymphangiogenic factor and seems to be highly chemoattractive for lymphatic endothelial cells. It induces proliferation of lymphatic endothelial cells and development of new lymphatic sinuses which are directed immediately beneath the chorionic epithelium. Our studies show that VEGF and VEGF-C are specific angiogenic and lymphangiogenic growth factors, respectively.
Detection of lymphatic endothelal cells (LECs) has been problematic because of the lack of specific markers. The homeobox transcription factor Prox1 is expressed in LECs of murine and avian embryos. We have studied expression of Prox1 in human tissues with immunofluorescence. In 19-wk-old human fetuses, Prox1 and vascular endothelial growth factor receptor-3 (VEGFR-3) are coexpressed in LECs of lymphatic trunks and lymphatic capillaries. Prox1 is located in the nucleus, and its expression is mutually exclusive with that of the blood vascular marker PAL-E. Prox1 is a constitutive marker of LECs and is found in tissues of healthy adults and lymphedema patients. Blood vascular endothelial cells (BECs) of hemangiomas express CD31 and CD34, but not Prox1. A subset of these cells is positive for VEGFR-3. Lymphatics in the periphery of hemangiomas express Prox1 and CD31, but not CD34. In lymphangiomas, LECs express Prox1, CD31, and VEGFR-3, but rarely CD34. In the stroma, spindle-shaped CD34-positive cells are present. We show that Prox1 is a reliable marker for LECs in normal and pathologic human tissues, coexpressed with VEGFR-3 and CD31. VEGFR-3 and CD34 are less reliable markers for LECs and BECs, respectively, because exceptions from their normal expression patterns are found in pathologic tissues.
Segmentation of the paraxial mesoderm leads to somite formation. The underlying molecular mechanisms involve the oscillation of "clock-genes" like c-hairy-1 and lunatic fringe indicative of an implication of the Notch signaling pathway. The cranio-caudal polarity of each segment is already established in the cranial part of the segmental plate and accompanied by the expression of genes like Delta1, Mesp1, Mesp2, Ulicx-1, and EphA4 which are restricted to one half of the prospective somite. Dorsoventral compartmentalization of somites leads to the development of the dermomyotome and the sclerotome, the latter forming as a consequence of an epithelio-to-mesenchymal transition of the ventral part of the somite. The sclerotome cells express Pax-1 and Pax-9, which are induced by notochordal signals mediated by sonic hedgehog (Shh) and noggin. The craniocaudal somite compartmentalization that becomes visible in the sclerotomes is the prerequisite for the segmental pattern of the peripheral nervous system and the formation of the vertebrae and ribs, whose boundaries are shifted half a segment compared to the sclerotome boundaries. Sclerotome development is characterized by the formation of three subcompartments giving rise to different parts of the axial skeleton and ribs. The lateral sclerotome gives rise to the laminae and pedicles of the neural arches and to the ribs. Its development depends on signals from the notochord and the myotome. The ventral sclerotome giving rise to the vertebral bodies and intervertebral discs is made up of Pax-1 expressing cells that have invaded the perinotochordal space. The dorsal sclerotome is formed by cells that migrate from the dorso-medial angle of the sclerotome into the space between the roof plate of the neural tube and the dermis. These cells express the genes Msx1 and Msx2, which are induced by BMP-4 secreted from the roof plate, and they later form the dorsal part of the neural arch and the spinous process. The formation of the ventral and dorsal sclerotome requires directed migration of sclerotome cells. The regionalization of the paraxial mesoderm occurs by a combination of functionally Hox genes, the Hox code, and determines the segment identity. The development of the vertebral column is a consequence of a segment-specific balance between proliferation, apoptosis and differentiation of cells.
We have studied the angiogenic potential of the unsegmented paraxial mesoderm and epithelial somites of the trunk with homotopical grafts between quail and chick embryos. Quail endothelial cells of the grafts were stained with the QH-1 antibody after 1-6 days of reincubation. The unsegmented paraxial mesoderm and all parts of the epithelial somite were found to contain angioblasts which develop into QH-1 positive endothelial cells. These cells are incorporated into the lining of the host's blood vessels such as the perineural vascular plexus and the dorsal branches of the aorta. There is a certain preference as concerns the location of endothelial cells derived from different parts of the somites. Angioblasts from ventral somite halves are mainly found in ventrolateral blood vessels. Those from dorsomedial quadrants form vessels in the dermis of the back, and those from dorsolateral quadrants can be found in the ventrolateral body wall and the wing. With the exception of the dorsal perineural vascular plexus, angioblasts do not cross the median plane of the body. This shows that, although angioblasts migrate extensively, there is bilaterality of the vascular system in the trunk. It remains to be studied whether the notochord plays a role in the establishment of this bilaterality. 0 1995 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.