The avian sclerotome forms by epitheliomesenchymal transition of the ventral half-somite. Sclerotome development is characterized by a craniocaudal polarization, resegmentation, and axial identity. Its formation is controlled by signals from the notochord, the neural tube, the lateral plate mesoderm, and the myotome. These signals and crosstalk between somite cells lead to the separation of various subdomains, such as the central and ventral sclerotomes that express Pax1 under the control of Sonic hedgehog and Noggin, and the dorsal and lateral sclerotome that do not express Pax1 and are controlled by Bmp-4. Further subdomains that give rise to specific derivatives are the syndetome, neurotome, meningotome, and arthrotome. The molecular control of subdomain formation and cell type specification is discussed.
SUMMARYIn vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates.
Segmentation of the paraxial mesoderm leads to somite formation. The underlying molecular mechanisms involve the oscillation of "clock-genes" like c-hairy-1 and lunatic fringe indicative of an implication of the Notch signaling pathway. The cranio-caudal polarity of each segment is already established in the cranial part of the segmental plate and accompanied by the expression of genes like Delta1, Mesp1, Mesp2, Ulicx-1, and EphA4 which are restricted to one half of the prospective somite. Dorsoventral compartmentalization of somites leads to the development of the dermomyotome and the sclerotome, the latter forming as a consequence of an epithelio-to-mesenchymal transition of the ventral part of the somite. The sclerotome cells express Pax-1 and Pax-9, which are induced by notochordal signals mediated by sonic hedgehog (Shh) and noggin. The craniocaudal somite compartmentalization that becomes visible in the sclerotomes is the prerequisite for the segmental pattern of the peripheral nervous system and the formation of the vertebrae and ribs, whose boundaries are shifted half a segment compared to the sclerotome boundaries. Sclerotome development is characterized by the formation of three subcompartments giving rise to different parts of the axial skeleton and ribs. The lateral sclerotome gives rise to the laminae and pedicles of the neural arches and to the ribs. Its development depends on signals from the notochord and the myotome. The ventral sclerotome giving rise to the vertebral bodies and intervertebral discs is made up of Pax-1 expressing cells that have invaded the perinotochordal space. The dorsal sclerotome is formed by cells that migrate from the dorso-medial angle of the sclerotome into the space between the roof plate of the neural tube and the dermis. These cells express the genes Msx1 and Msx2, which are induced by BMP-4 secreted from the roof plate, and they later form the dorsal part of the neural arch and the spinous process. The formation of the ventral and dorsal sclerotome requires directed migration of sclerotome cells. The regionalization of the paraxial mesoderm occurs by a combination of functionally Hox genes, the Hox code, and determines the segment identity. The development of the vertebral column is a consequence of a segment-specific balance between proliferation, apoptosis and differentiation of cells.
Somites are segments of paraxial mesoderm that give rise to a multitude of tissues in the vertebrate embryo. Many decades of intensive research have provided a wealth of data on the complex molecular interactions leading to the formation of various somitic derivatives. In this review, we focus on the crucial role of the somites in building the body wall and limbs of amniote embryos. We give an overview on the current knowledge on the specification and differentiation of somitic cell lineages leading to the development of the vertebral column, skeletal muscle, connective tissue, meninges, and vessel endothelium, and highlight the importance of the somites in establishing the metameric pattern of the vertebrate body. Developmental Dynamics 236:2382-2396, 2007.
We have studied the angiogenic potential of the unsegmented paraxial mesoderm and epithelial somites of the trunk with homotopical grafts between quail and chick embryos. Quail endothelial cells of the grafts were stained with the QH-1 antibody after 1-6 days of reincubation. The unsegmented paraxial mesoderm and all parts of the epithelial somite were found to contain angioblasts which develop into QH-1 positive endothelial cells. These cells are incorporated into the lining of the host's blood vessels such as the perineural vascular plexus and the dorsal branches of the aorta. There is a certain preference as concerns the location of endothelial cells derived from different parts of the somites. Angioblasts from ventral somite halves are mainly found in ventrolateral blood vessels. Those from dorsomedial quadrants form vessels in the dermis of the back, and those from dorsolateral quadrants can be found in the ventrolateral body wall and the wing. With the exception of the dorsal perineural vascular plexus, angioblasts do not cross the median plane of the body. This shows that, although angioblasts migrate extensively, there is bilaterality of the vascular system in the trunk. It remains to be studied whether the notochord plays a role in the establishment of this bilaterality. 0 1995 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.