According to the World Health Organization (WHO), type 2 diabetes mellitus (T2DM) is a result of the inefficient use of insulin by the body. More than 95% of people with diabetes have T2DM, which is largely due to excess weight and physical inactivity. This study proposes an intelligent feature selection of metabolites related to different stages of diabetes, with the use of genetic algorithms (GA) and the implementation of support vector machines (SVMs), K-Nearest Neighbors (KNNs) and Nearest Centroid (NEARCENT) and with a dataset obtained from the Instituto Mexicano del Seguro Social with the protocol name of the following: “Análisis metabolómico y transcriptómico diferencial en orina y suero de pacientes pre diabéticos, diabéticos y con nefropatía diabética para identificar potenciales biomarcadores pronósticos de daño renal” (differential metabolomic and transcriptomic analyses in the urine and serum of pre-diabetic, diabetic and diabetic nephropathy patients to identify potential prognostic biomarkers of kidney damage). In order to analyze which machine learning (ML) model is the most optimal for classifying patients with some stage of T2DM, the novelty of this work is to provide a genetic algorithm approach that detects significant metabolites in each stage of progression. More than 100 metabolites were identified as significant between all stages; with the data analyzed, the average accuracies obtained in each of the five most-accurate implementations of genetic algorithms were in the range of 0.8214–0.9893 with respect to average accuracy, providing a precise tool to use in detections and backing up a diagnosis constructed entirely with metabolomics. By providing five potential biomarkers for progression, these extremely significant metabolites are as follows: “Cer(d18:1/24:1) i2”, “PC(20:3-OH/P-18:1)”, “Ganoderic acid C2”, “TG(16:0/17:1/18:1)” and “GPEtn(18:0/20:4)”.
Driver identification refers to the process whose primary purpose is identifying the person behind the steering wheel using collected information about the driver him/herself. The constant monitoring of drivers through sensors generates great benefits in advanced driver assistance systems (ADAS), to learn more about the behavior of road users. Currently, there are many research works that address the subject in search of creating intelligent models that help to identify vehicle users in an efficient and objective way. However, the different methodologies proposed to create these models are based on data generated from sensors that include different vehicle brands on routes established in real environments, which, although they provide very important information for different purposes, in the case of driver identification, there may be a certain degree of bias due to the different situations in which the route environment may change. The proposed method seeks to intelligently and objectively select the most outstanding statistical features from motor activity generated in the main elements of the vehicle with genetic algorithms for driver identification, this process being newer than those established by the state-of-the-art. The results obtained from the proposal were an accuracy of 90.74% to identify two drivers and 62% for four, using a Random Forest Classifier (RFC). With this, it can be concluded that a comprehensive selection of features can greatly optimize the identification of drivers.
Type 2 diabetes mellitus (T2DM) represents one of the biggest health problems in Mexico, and it is extremely important to early detect this disease and its complications. For a noninvasive detection of T2DM, a machine learning (ML) approach that uses ensemble classification models with dichotomous output that is also fast and effective for early detection and prediction of T2D can be used. In this article, an ensemble technique by hard voting is designed and implemented using generalized linear regression (GLM), support vector machines (SVM) and artificial neural networks (ANN) for the classification of T2DM patients. In the materials and methods as a first step, the data is balanced, standardized, imputed and integrated into the three models to classify the patients in a dichotomous result. For the selection of features, an implementation of LASSO is developed, with a 10-fold cross-validation and for the final validation, the Area Under the Curve (AUC) is used. The results in LASSO showed 12 features, which are used in the implemented models to obtain the best possible scenario in the developed ensemble model. The algorithm with the best performance of the three is SVM, this model obtained an AUC of 92% ± 3%. The ensemble model built with GLM, SVM and ANN obtained an AUC of 90% ± 3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.