The aim of this study was to determine the main stages of submandibular salivary gland development during the embryonic period in humans. In addition, we studied submandibular salivary gland development in rats on embryonic days 14-16 and expression in the submandibular salivary gland region with the monoclonal antibody HNK-1. Serial sections from 25 human embryos with a greatest length ranging from 10 to 31 mm (Carnegie stages 16-23; weeks 5.5-8 of development) and Wistar rats of embryonic days (E) 14-16 were analysed with light microscopy. Five stages of submandibular salivary gland development were identified. The prospective stage (1), between weeks 5.5 and early week 6, is characterized by a thickening of the epithelium of the medial paralingual groove in the floor of the mouth corresponding to the primordium of the submandibular salivary gland parenchyma. At this stage, the primordium of the parasympathetic ganglion lies below the lingual nerve. The primordium of the submandibular salivary gland parenchyma is observed in rats on E14 in the medial paralingual groove with mesenchymal cells, underlying the lingual nerve. These cells are HNK-1-positive, corresponding to the primordium of the parasympathetic ganglion. The bud stage (2), at the end of week 6 in humans and on E15 in rats, is characterized by the proliferation and invagination of the epithelial condensation, surrounded by an important condensation of the mesenchyme. The pseudoglandular stage (3) at week 6.5 is characterized by the beginning of the formation of lobes in the condensed mesenchyme. The canalicular stage (4), between week 7 and 7.5, is characterized by the appearance of a lumen in the proximal part of the submandibular duct. The innervation stage (5) occurs during week 8, with the innervation of the submandibular and interlobular ducts. Nervous branches arriving from the parasympathetic ganglion innervate the glandular parenchyma. Numerous blood vessels are observed nearby. Our results suggest that submandibular salivary gland development requires interactions among epithelium, mesenchyme, parasympathetic ganglion and blood vessels.
When performing a pectoralis major transfer, it is essential to identify the musculocutaneous nerve and its branches. In some cases, a subcoracobicipital transfer may not be feasible and a more superficial transfer should be considered.
The goal of this study is to clarify the development of the long head of the biceps brachii tendon (LHBT) and to verify the existence and development of the coracoglenoid ligament. Histological preparations of 22 human embryos (7-8 weeks of development) and 43 human fetuses (9-12 weeks of development) were studied bilaterally using a conventional optical microscope. The articular interzone gives rise to the LHBT, glenoid labrum, and articular capsule. During the fetal period, it was observed that in 50 cases (58%), the LHBT originated from both the glenoid labrum and the scapula, while in 36 cases (42%), it originated only from the glenoid labrum. The coracoglenoid ligament, first described by Sappey in 1867, is a constant structure that originates at the base of the coracoid process and projects toward the glenoid labrum zone, which is related to the origin of the LHBT. The coracoglenoid ligament was more easily identifiable in the 36 cases in which the LHBT originated only from the glenoid labrum. We suggest that the coracoglenoid ligament is a constant anatomical structure, is not derived from the articular interzone unlike the LHBT, and contributes to the fixation of the glenoid labrum in the scapula in cases in which the LHBT originated only from the glenoid labrum. We postulate that, when the LHBT is fixed only at the glenoid labrum, alterations in the coracoglenoid ligament could lead to a less sufficient attachment of the glenoid labrum to the scapula which could predispose to a superior labral lesion.
A double-bundle anterior cruciate ligament (ACL) reconstruction associated with an anterolateral ligament (ALL) reconstructions is performed. The semitendinosus and gracilis are harvested. At knee maximum flexion, the anteromedial (AM) femoral tunnel is performed in the AM footprint area. Through the anterolateral portal, the tip of the outside-in femoral guide is placed in the posterolateral footprint area. The guide sleeve is pushed onto the lateral femoral cortex at the ALL attachment. At 110° knee flexion, the posterolateral-ALL tunnel is performed. The tibial ACL tunnel is performed as usual. The tibial guide is placed between the ALL tibial attachment and the tibial ACL tunnel entrance to perform the ALL tibial tunnel. The gracilis graft is introduced from caudal to cranial, achieving fixation with a 6-mm diameter screw (outside-in). The AM femoral fixation is achieved with a suspension device. ACL tibial graft fixation is achieved with a screw. Afterward, the gracilis is passed under the fascia lata to the tibial entry point. A 6-mm diameter screw is placed from the external cortex into the tibial ALL tunnel. The biomechanical advantage of the double-bundle ACL reconstruction with the biomechanical advantage of the ALL anatomic reconstruction is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.