Figure 1: In the VirtualDesk prototype, data is rendered at arm's reach and manipulated only by mid-air natural hand gestures (center). A reproduction of the analyst's real desk is included (left) to enable tangible interaction with coordinated views and controls (right). Abstract3D representations are potentially useful under many circumstances, but suffer from long known perception and interaction challenges. Current immersive technologies, which combine stereoscopic displays and natural interaction, are being progressively seen as an opportunity to tackle this issue, but new guidelines and studies are still needed, especially regarding information visualization. Many proposed approaches are impractical for actual usage, resulting in user discomfort or requiring too much time or space. In this work, we implement and evaluate an alternative data exploration metaphor where the user remains seated and viewpoint change is only realisable through physical movements. All manipulation is done directly by natural mid-air gestures, with the data being rendered at arm's reach. The virtual reproduction of the analyst's desk aims to increase immersion and enable tangible interaction with controls and two dimensional associated information. A comparative user study was carried out against a desktop-based equivalent, exploring a set of 9 perception and interaction tasks based on previous literature and a multidimensional projection use case. We demonstrate that our prototype setup, named VirtualDesk, presents excellent results regarding user comfort and immersion, and performs equally or better in all analytical tasks, while adding minimal or no time overhead and amplifying user subjective perceptions of efficiency and engagement. Results are also contrasted to a previous experiment employing artificial flying navigation, with significant observed improvements.
Fig. 1. Our immersive space-time cube (STC) aims to lower the known steep learning curve of this three-dimensional spatio-temporal representation. The base map is coupled to a virtual reproduction of the analyst's own real desk and all data manipulations and queries are implemented through intuitive gestures and tangible controls, increasing usability and comfort, while decreasing mental workload.Abstract-A Space-Time Cube enables analysts to clearly observe spatio-temporal features in movement trajectory datasets in geovisualization. However, its general usability is impacted by a lack of depth cues, a reported steep learning curve, and the requirement for efficient 3D navigation. In this work, we investigate a Space-Time Cube in the Immersive Analytics domain. Based on a review of previous work and selecting an appropriate exploration metaphor, we built a prototype environment where the cube is coupled to a virtual representation of the analyst's real desk, and zooming and panning in space and time are intuitively controlled using mid-air gestures. We compared our immersive environment to a desktop-based implementation in a user study with 20 participants across 7 tasks of varying difficulty, which targeted different user interface features. To investigate how performance is affected in the presence of clutter, we explored two scenarios with different numbers of trajectories. While the quantitative performance was similar for the majority of tasks, large differences appear when we analyze the patterns of interaction and consider subjective metrics. The immersive version of the Space-Time Cube received higher usability scores, much higher user preference, and was rated to have a lower mental workload, without causing participants discomfort in 25-minute-long VR sessions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.