A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an “app” on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research
Figure 1: From left to right: our projector-based display showing an HDR image; our LED-based HDR display showing a discrete and a smooth intensity ramp (the top half of the discrete ramp and the bottom half of the smooth ramp have each been covered by a 1% transparent filter to illustrate high luminance content on the left side of the image, which cannot be captured by the camera); a color-coded original HDR image; HDR photograph taken off the screen of our projector-based system; HDR photograph taken off a conventional monitor displaying the tone-mapped image.
AbstractThe dynamic range of many real-world environments exceeds the capabilities of current display technology by several orders of magnitude. In this paper we discuss the design of two different display systems that are capable of displaying images with a dynamic range much more similar to that encountered in the real world. The first display system is based on a combination of an LCD panel and a DLP projector, and can be built from off-the-shelf components. While this design is feasible in a lab setting, the second display system, which relies on a custom-built LED panel instead of the projector, is more suitable for usual office workspaces and commercial applications. We describe the design of both systems as well as the software issues that arise. We also discuss the advantages and disadvantages of the two designs and potential applications for both systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.