We investigate the effects of input device latency and spatial jitter on 2D pointing tasks and 3D object movement tasks. First, we characterize jitter and latency in a 3D tracking device and an optical mouse used as a baseline comparison. We then present an experiment based on ISO 9241-9, which measures performance characteristics of pointing devices. We artificially introduce latency and jitter to the mouse and compared the results to the 3D tracker. Results indicate that latency has a much stronger effect on human performance than low amounts of spatial jitter. In a second study, we use a subset of conditions from the first to test latency and jitter on 3D object movement. The results indicate that large, uncharacterized jitter "spikes" significantly impact 3D performance.
We present a study of cursors for selecting 2D-projected 3D targets. We compared a stereo-and mono-rendered (oneeyed) cursor using two mouse-based and two remote pointing techniques in a 3D Fitts' law pointing experiment. The first experiment used targets at fixed depths. Results indicate that one-eyed cursors only improve screen-plane pointing techniques, and that constant target depth does not influence pointing throughput. A second experiment included pointing between targets at varying depths and used only "screen-plane" pointing techniques. Our results suggest that in the absence of stereo cue conflicts, screenspace projections of Fitts' law parameters (target size and distance) yield constant throughput despite target depth differences and produce better models of performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.